精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因準確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計制作 基因解碼基因檢測信息技術(shù)部

99久久免费国产精品6| 成人欧美一区二区三区在线| 国产三级不卡在线观看视频| 牲交a欧美牲交aⅴ免费一| 国产在线jyzzjyzz免费护士| 国产精品一区二区五月天| 国产精品熟女高潮精品| 午夜国产精品入口| 99久久99久久精品免费看蜜桃| 日韩欧美AⅤ综合网站发布| 国产一区二区三区在线看麻豆| 五月天婷婷缴情五月免费观看| 丁香花影院在线观看免费播放电视剧| 天堂影院在线观看一区二区亚洲| 亚洲精品乱码久久久久久| 亚洲+在线+国产| 牛牛在线免费视频| 玖玖无码中文字幕五月天| a在线观看免费网站大全| 成人综合另类国产色视频| 天天视频在线观看免费精品| 国产乱xxxxx978国语对白| 日韩在线视频在线观看| 免费黄色在线网站| 久久国产精品久久国产精品99| 中文字幕av导航| 香蕉视频在线观看黄| 精品欧洲AV无码喷奶水| 亚洲AV综合在线| 亚洲+国产+日本视频| 人妻被按摩到潮喷中文| 欧美aaaa视频| 在线观看免费高清电视剧推荐 | 手机看片福利永久国产香蕉| 安徽丰满少妇BBBBBB| 蜜桃无码一区二区三区| 国产男生午夜福利免费网站| 日韩欧美一级片一区二区| 最新2019中文字幕第一页| 成人年人免费看xxxxxxx| 国产精品久久网站| 大香蕉国产在线视频| 三年片在线观看高清完整版| 欧美成人在线免费观看| 999在线观看免费高清电视剧| 日韩亚洲欧美亚洲欧美亚洲国产| 国产又粗又硬又爽又猛又黄视频| 久久久99无码一区| 日本真人做爰a片| 丰满的女人一区二区三区 | 国产91热爆ts人妖在线| 《公交车欲淫》伦理| 国产精品久久99精品毛片三a | 怡红院av一区二区三区| 欧美成人看片一区二区| 欧美两根一起进3p做受视频| 亚洲天堂视频免费观看网站| 国产福利一区二区手机观看| 国产日韩欧美在线一区二区三区| sm+另类+在线视频| 久久青青草原国产毛片夜夜亚洲| JLZZJLZZ亚洲女人19| 亚洲精品无码你懂的网站| 亚洲国产99精品国自产拍| 激情影院免费视频试看| 国产精品久久婷婷六月丁香| 久久久综综合色一本伊人| 日本在线视频网站+www+色| 日韩人妻系列无码专区| 日韩人妻偷拍一区二区三区| 国产免费又爽又色又粗视频| 国产女人叫床高潮视频+在线观看| 丰满少妇高潮惨叫久久久| 国产成人精品久久一区二区| 亚洲∧V久久久无码精品| 男女吻胸做爰摸下身 | 中文字幕国产在线| 国产精品久久久久久久天堂| 国产偷国产偷亚洲清高app| 網友分享色婷婷色99国产综合精品心得 | 国产va在线观看| 护士被黑人狂躁A片| 国产无遮挡又黄又爽在线视频| 天堂视频中文在线| 啪啪网站免费观看无需下载| 亚洲国产精品久久久久爰| 欧美日韩在线视频免费播放| 在线人视频观看免费| 狠狠婷婷色五月中文字幕| 国产噜噜噜精品免费视频 | 国产无套内谢普通话对白91| 饥渴难耐的人妻一区二区三区| 欧美成人三级在线观看| 国产精品高清一区二区不卡片| 精品国无人区一品二品三品的特点| 风流少妇一区二区三区91| 一区二区三区+国产+欧美日韩| 国产又黄又粗又爽又免费| 91精品国产色综合久久不卡98| 神宫寺奈中文无码字幕| 国产毛片女人高潮叫声| 黄色亚洲一区二区三区视频| 又粗又长又硬义又黄又爽| 国产欧美亚洲精品第1页| 亚洲天堂成视频在线观看| 久久精品视频亚洲| 在线观看+中文字幕| 人人妻人人爽人人澡人人| 91贵在真实少妇SPA推油按摩| 国产欧美国产精品第一区| 西西444WWW无码视频软件| 成人欧美一区二区三区在线| 日本精品免费在线观看| 欧美日韩中文字幕在线xxx| 国产亚洲精品香蕉网九色| 屁屁国产第一页草草影院| 99久久久久免费精品国产| 初撮熟女撮り老女人| 18+欧美+日韩| 91精品国产综合久久久蜜臀九色| 成在人线Aⅴ无码免费高潮水| 精品国产亚洲av色噜噜| 国产精品二区三区四区五区 | 国产一区二区精品久久| 亚洲欧美精品午睡沙发| 日本无遮挡吸乳视频| 精品人妻久久久久久888| 在线视频欧美亚洲| 美女久久久久久久久国产 | 少妇无码自慰毛片久久久久久| 久久中文免费视频| 国产成人免费av片久久| 亚洲欧美一区二区三区日产| 久久国内精品自在自线图片| 337p日本欧洲亚洲大胆裸体艺术| 三级慰安女妇威狂放播| 亚洲精品国产av日韩精品 | 国产精品一级AA毛片不收费| 中文字幕av一区二区三区| 国产欧美日韩视频在线观看| 亚洲熟妇AV一区二区三区| 99精品国产综合久久久久| 国产美女视频一区二区三区| 亚洲а∨天堂久久精品2021| 国产99久9在线视频传媒| 国产成+人+综合+欧美亚洲| 国产av一区二区二区三区| 91Porn人妻第一页| 国产精品揄拍一区二区久久国内亚洲精| 超碰cao已满18进入离开官网| 日韩内射人妻1区2区3区| 少女18岁免费观看高清电视剧 | 国产美女在线播放| A片女女女女女女BBBB| 亚洲自拍高清免费| 日韩人妻无码一区二区三区| 国产稚嫩高中生呻吟激情在线视频| 伊人久久大香线蕉成人| 国产成人久久精品亚洲小说| 亚洲乱码国产乱码精品精姦| 足疗店无套内谢少妇| 亚洲精品久久久久中文字幕| 偷拍真实偷窥XXX盗摄| 国产传媒麻豆剧精品av国产| 国产美女久久久亚洲综合| 人人妻天天爽夜夜爽精品视频| 搡BBBB搡BBBB搡BBB| 91绿帽黑人系列一区| 亚欧洲在线视频免费观看| 久久婷婷人人澡人人喊人人爽| 久久青青草原国产最新片完整| 欧美精品v国产精品v曰韩品| 天堂av资源在线| 欧美一级一区二区三区| 欧美一级免费在线观看视频最新| 六夫共妻高H喷汁呻吟NP| 中文国产日本网站| 97超碰在线免费观看| 国产精品1000夫妇激情啪| www黄色在线观看| 人人妻天天爽夜夜爽精品视频| 欧美极品中文字幕在线观看| 国产精品久久免费成年大片| 视频一区国产第一页| 国产又色又爽又高潮免费| 午夜精品乱人伦小说区| 亚洲伊人久久大香线蕉下载| 亚洲老熟女乱综合一区二区| 无码人妻一区二区三区尽卡亚| 国产一区二区三区精品在线| 国产浮力第一页草草影院| 国产成人精品白浆免费视频试看| 99久久精品国产亚洲| 国产乱码卡二卡三卡老狼| 西西人体大胆ww4444图片| 成人看片黄a免费看视频| 国产成人精品免费视频大全五级| 无遮挡国产高潮视频免费观看互動交流| 丁香啪啪中文字幕亚洲人成一区 | 精品视频在线免费播放| 国产一三四2021不卡| 国产精品美女久久久久AV福利 | 在线bt天堂网.www最新版| 欧美自拍另类欧美综合图片区| 亚洲成人久久国产精品| 麻豆亚洲AV无码精品色尤物| 亚洲欧美中文字幕手机在线观看| 伊人久久精品亚洲午夜| 《玉女心经之观音坐莲》| 久久精品国产亚洲αv忘忧草| 挺进肉丝熟妇老师的身体视频| 国产又黄又大视频| 亚洲欧美国产国产一区二区三区| 日韩人妻少妇一区二区| 久久99精品久久久久久熟女影| 亚洲综合日韩久久成人av| 永久免费看成人AV的动态图| 麻豆免费在线观看视频| 在车里被高潮被c了八次| 白丝爆浆18禁一区二区三区 | 高潮毛片无遮挡高清免费视频网站 | 天堂网www在线最新版资源 | 日韩av不卡在线观看| 亚洲国产天堂视频在线播放| 亚洲精品久久酒店| 欧美一区二区三区亚洲国产精品| 国产亚洲美女精品久久久久| 精品久久久久久国产免费| 中文字幕+成人av| 亚洲乱亚洲乱妇无码麻豆| 国产91精品久久久久91痣美人| 久本草在线中文字幕亚洲欧美| 欧洲丰满少妇做爰视频爽爽| 久久久久蜜桃精品成人片| 亚洲一卡久久4卡5卡6卡7卡 | 97人妻在线视频免费观看| 国产青草视频在线观看免费影院| 6969成人亚洲婷婷| 主播大秀一区二区三区| 国产+在线+观看| 夜夜摸日日躁欧美视频| 色综合久久久久综合99| 五月激情婷婷综合| 国产精品人成视频免费软件| 国产成人最新三级在线视频| 国产亚洲精品久久精品6| 1024亚洲男人的天堂久久| 午夜精品久久久久久久| 国产成人精品亚洲精品| 国产啊v在线观看| 乡下人产国偷v产偷v自拍| 久久久亚洲欧洲日产av| 日韩免费码中文在线观看| 亚洲欧美日韩人成在线播放| 岛国片人妻三上悠亚| 成人做爰A片免费看黄冈宾馆 | 日韩一级二级视频| 亚洲综合欧美日韩| 手机在线一区二区三区| 偷玩邻居醉酒人妻| 日韩中文字幕视频手机在线秒播| 日韩午夜激情视频| 欧美精品videossex少妇| 91麻豆精产国品一二三产品测评| 久久久www成人免费毛片女| 欧美黑人一级爽快片淫片高清| 91女人18片女毛片60分钟| 亚洲日韩av一区二区三区中文| 久久精品免费国产大片| 久久精品国产精品亚洲艾草网| 国产+成人+欧美| 国产激情美女久久久久久吹潮| 丁香婷婷综合激情五月色| 中文字幕欧美高清在线观看| 欧美成妇人吹潮在线播放+下载| 91亚洲欧美日韩国产综合| 国产精品女同一区三区五区 | 中文字幕在线视频免费视频| 乱色国内精品视频在线| 免费观看成年人网站| 久久久久人妻精品一区蜜桃 | 中文精品人妻素人一级片| 全免费午夜一级毛片一级真人| 久久受www免费人成| 制服丝袜诱惑一区二区三区| 国产日产高清欧美一区| 成人黄色手机在线| 丰满熟女人妻中文字幕免费| 亚洲成aⅴ人在线视频| 日本老熟妇乱子伦精品| 国产日韩欧美亚洲一区二区三区| 亚洲爆乳大丰满无码专区| 久久免费的精品国产v∧| 一区二区不卡av免费观看| 亚洲一区二区三区乱码av麻逗| 337P粉嫩大胆噜噜噜55569| 太骚了全程对白Spa69| 成人+动漫+日韩毛片| www.成人在线观看| 黄色网页在线播放| 小h片免费观看久久久久| 日本高清在线www3344| www成人在线观看| 最近免费日韩在线视频观看| 成人高清免费观看| 国产精品天干天干综合网| 女同一区二区三区在线观看| 久章草这里只有精品| 日韩黄a三级三级三级看三级少妇| 日本人六九视频69jzz免费| 在线播放av网站| 精品久久亚洲中文字幕| 午夜看片在线观看| 国产一级精品理论片在线| 777米奇色888狠狠俺去啦| 巨大乳の揉んで乳榨り男女男| 国产一级内射91小草| 国产内射xxxxx在线| а√中文在线资源库| 无翼乌18禁全肉肉无遮挡彩色| 午夜免费理论片A无码 | 欧美日韩另类图片亚洲视频| 日韩亚AV无码一区二区三区| 久久婷婷综合99啪69影院| a一区二区三区乱码在线| 亚洲va欧美va国产综合久久| 波多野结衣《温泉人妻》| 日本一区二区免费在线观看| 电击+调教+折磨| 青青国产在线视频| 亚洲国产精品久久久久婷婷图片| 伊人色综合视频一区二区三区| 九九最新视频完整| 国产成人精品久久二区二区四季 | 亚洲精品有码在线观看| 欲香欲色天天综合久久| 国产精品手机视频| 在车里被高潮被c了八次| 东京热无码AV一区二区| 亚洲精品久久久久久蜜臀| 中文字幕妇偷乱视频在线观| 国产成人专区无广告在线 | 无码人妻丰满熟妇啪啪网站| 亚洲AV日韩AV无码黑人| 成人精品gif动图一区| 又色又爽又黄的视频网站| 色综合色欲色综合色综合色综合r| 日韩中文字幕视频手机在线秒播| 黄页+国产+在线观看| jzzjzz日本丰满成熟少妇| 欧美福利在线视频| 国模冰莲小泬喷潮337p| 上海熟搡BBB搡BBBB| 国产男女猛烈视频在线观看麻豆| 人妻熟妇女的欲乱系列| 国产欧美日韩精品一区二区三区| a天堂视频在线观看| 精品多人p群无码| 波多野结衣中文字幕一区二区三区| 精品熟人一区二区三区四区| 五月婷婷激情小说| 国产精品久久久久婷婷| 337p日本欧洲亚洲大胆裸体艺术| 美女黄网站人色视频免费国产| mm131亚洲国产美女久久| 亚洲精品日韩中文字幕久久久| 麻豆人妻换人妻好紧| 91丨porny丨国产麻豆| 在线日本国产成人免费不卡| 成人亚洲xxx在线观看| 一边摸一边抽搐一进一出口述| 国产精品美女.www爽爽视频| 国产午夜影视大全免费观看| 亚洲第一综合成人在线观看| 亚洲综合区图片小说区| 中文字幕人妻在线中字| 亚洲欧美国产一区二区三| 91麻豆国产福利在线观看| 国产偷国产偷亚洲高清人乐享| 日韩精品――中文字幕| 天堂岛视频在线观看欧美日韩| 欧美黄色免费视频| 黄色成人av网站| 亚洲精品日韩中文字幕久久久| 美女诱惑一区二区| 色噜噜亚洲男人的天堂| 香蕉视频免费网站| 国产午夜精品一区二区芒果视频| 中国国产免费毛卡片| 亚洲一区二区影视| 亚洲+欧洲+国产一区二区三区| 狠狠色噜噜狠狠狠狠五月婷 | 思思青青人人草热视频| 97超碰在线免费观看| 国产精品一区二区三区免费| 亚洲视频在线免费| 天堂中文在线免费观看视频| 影音先锋+中文+人妻| 国内老熟妇乱子伦视频| 老司机在线精品视频网站| 亚洲中文无码mv| 国产又爽又黄无遮挡免费视频| 国产做受高潮漫动| 伊人热热久久原色播放www| 天天澡天天揉揉av无码| 日韩精品无码一二区久乐网| 交换一区二区三区va在线| 亚洲欧美日韩视频一区二区三区| 国产在线观看免费观看99| www.delisava.com| 蜜桃精品免费久久久久影院| 久久精品人妻中文系列| 国产乱子经典视频在线观看| 国产+欧美+欧洲| 久久这里只精品国产免费99| 91porny首页入口| 国产在线视频不卡一二| 不卡色老大久久综合网| 无码日韩精品一区二区免费96| 巜饥渴的少妇hd高清| 天天躁日日躁狠狠躁800凹凸| 天天免費国产在线观看| 9299yy看片婬黄大片软件| 亚洲欧洲国产日韩在线不卡| 真实乱子伦厨房A片| 无码人妻丰满熟妇区网站| 91毛片在线观看| 国产精品一区在线观看www| 日本中文字幕中出在线| 91精品国产麻豆久久久久久| 中文在线字幕观看电视剧17.3| 国产成人精品自拍| 国内乱子对白免费在限| 国产又黄又爽又色视频免视频| 日韩午夜熟女人妻视频| 狠狠躁夜夜躁人人爽天天开心婷婷| 国产寡妇树林野战在线播放| 亚洲一区日韩在线| 初撮五十路人妻熟女| 尤物网站视频免费看| 亚洲欧洲日产国码中学| 麻豆国产成人av高清在线| 成人免费精品网站在线观看影片| 久久se精品一区二区| 99e久热只有精品8在线直播| 久久人午夜亚洲精品无码区| 99久久精品6在线播放| 中字幕一区二区三区乱码 | 欧美精品久久久久久久久久久| 宇都宫+无码+迅雷| 亚洲欧美日韩中文久久| 1000部丰满熟女富婆| 最近高清日本免费| 免费观看无遮挡www的视频午夜| 婷婷色香五月综合激激情| 中国女人做爰A片| 成人+在线+网站| 亚洲另类国产精品中文字幕| 国产在线精品免费| 欧美xxxx做受欧美1314| 亚洲a∨无码精品色午夜| 精品国产乱码久久久久久口爆网站| 4438ⅹ亚洲全国最大色丁香| 91Porn人妻第一页| 精品久久久噜噜噜久久| 亚洲日韩精品看片无码| 欧美+日韩+成人| 国产高清一区二区三区四区| 农夫+导航+亚洲| 国产精品一区免费在线看| 中文字幕欧美日韩va免费视频| 亚无码乱人伦一区二区| japane欧美孕交se孕妇孕交| 国产午夜18久久久久久白浆| 国产高清在线不卡| 国产亲妺妺xXXX888869| 秋霞鲁丝片Av无码少妇| 国产精品久久久久久99人妻精品| 亚洲成AV人片一区二区梦乃| 精品国产亚洲av色噜噜| 亚洲午夜影院在线观看视频| 男人天堂视频在线观看| 中文字幕无线码一区2020青青| 一级黄色大片免费观看| 国产山东熟女48嗷嗷叫| 麻豆精品久久久久久久99蜜桃 | 免费在线观看AV| 可以在线观看免费av的网站| 亚洲国产精品日韩av不卡在线| 日韩欧美在线不卡| 国产女人高潮视频在线观看| 国产丝袜在线精品丝袜不卡| 成年美女黄网站色大片免费看| 麻豆+视频+免费| 欧美+国产+精品| 国产精品女同一区三区五区| 黄色免费网站视频| 国产又硬又粗的视频在线观看 | 午夜精品久久久久久久久久| 黄色av小说在线观看| 欧洲av成本人在线观看免费| 2021最新国产精品网站| 手机免费av在线| 免费观看已满十八岁电视剧动漫星辰 | 18禁国产麻豆精品久久久久久 | 美女+免费+国产在线| 最新在线免费观看av的网站| 欧美日韩综合精品无人区| 人+国产片+综合| 国产精品亚洲视频一区二区三区| 午夜三级av在线播放| 狠狠躁夜夜躁人人爽天天天天97| 精品免费国产一区二区三区四区介绍 | 久久亚洲国产男女日穴精选| 亚洲大乳av成人天堂精品| 精品欧美激情精品一区| 66国产在线一区二区三区| 女人的天堂a国产在线观看| 怡春院熟女精品少妇aⅴ久久| 韩漫免费漫画在线观看方法 | 初撮八十路高龄老熟女| 国产精品一级片久久久久| 国内精自线一二三四在线看| 欧洲中文字幕日韩精品成人| 人妻+日本+调教| 亚洲丝袜一区二区| 成人在线视频网址| va亚洲va天堂va视频在线| 久久久久久久久淑女av国产精品 | 一个人在线观看免费视频www| 国产激情久久久久99视频| 亚洲一卡二卡三卡四卡免费视频 | 一区二区三区在线观看视频免费 | 虫虫漫画免费漫画弹窗入口| 美女裸体色黄污视频网站 | 日韩精品爆乳高清在线视频观看 | 一级一级特黄女人精品毛片| 一区二区三区无码按摩精油| 在线一区二区三区视频| 欧美久久成人一区999| 国产一区二区三区无修精品视频| 歪歪爽蜜臀av久久精品人人| 日日噜噜夜夜狠狠视频免费bd| 窝窝人体色WWW聚色窝欲女吧| 亚洲成a人片在线观看天堂| 亚洲热久久国产经典视频| 91在线喷水白浆| 色一情一区二区三区四区+国产| 日韩欧美一区视频| 色播视频在线播放| 男女污在线亚洲午夜视频| 粉嫩99精品99久久久久久桃色| 亚洲日韩精品一区二区三区| 毛片网站免费在线观看| 丰满人妻被黑人连续中出| 亚洲vr国产美女精品久久久久| 极品少妇伦理一区二区| 国产资源在线观看| 亚洲无AV在线中文字幕| 中文字幕+乱码+www| 国产精品一区二区免费| 哈尔滨熟女白浆91九色| 99久久久久国产精品免费| 一本久久a久久精品综合夜| 亚洲国产日韩视频观看| 一本无码人妻在中文字幕| 狂躁欧美肥臀大BBBB| japan丰满人妻videoshd高清 | 神马久久久久久久久久久| 青青草+深夜福利+免费观看| 波多野结衣视频一区| 欧美mv天堂在线免费播放| 精品亚洲一区二区三区一| 色678黄网全部免费| 国产午夜福利精品理论片| 国产白嫩护士被弄高潮| 久久成人免费精品网站| 99久久久久久国产精品| 午夜激情福利视频| 妖精视频在线观看免费| 国产高清吃奶成免费视频网站 | 欧美综合日韩中文字幕影院| 1024精品久久久久亚洲| 黑蝴蝶第一AV导航| 日韩人妻无码一区二区三区综合| 免费国产污网站在线观看不要卡| 亚洲一区二区三区激烈免费视频| 国产美女直播亚洲一区久久| 亚洲美女黄色一级啪啪视频| 国内精品久久久久久久小说| 国产内射xxxxx在线| 色拍自拍亚洲综合图区| 国产极品美女高潮无套久久 | 国产亚洲自拍av| av一区二区在线观看| 久久久99精品成人片中文字幕| 一本大道精品视频在线| 无码av大香线蕉伊人久久| 日韩v欧美v中文在线| 国产成人综合久久免费| 免费在线观看av| 国产成人久久精品二区三区| 一区二区三区偷拍| 青娱乐精品视频在线观看| 成人午夜高潮毛片| www九色com| 97免费视频在线观看| 日韩v欧美v中文在线| 粉嫩一区二区三区| 国产农村一国产农村无码毛片 | 天美麻花星空高清mv播放音乐| 精品国产鲁一鲁一区二区三区| 天天射天天干天天色| 久久精品国产v日韩v亚洲 | 99香蕉国产精品偷在线观看| 国产乱子伦精品免费女| 伊人色综合久久天天网| 狠狠躁天天躁无码中文字幕图| 嫩BBB槡BBBB槡BBBB免费视频| 欧美日韩免费高清一区色橹橹| 无码专区aaaaaa免费视频| 中文字幕丰满孑伦无码专区| 毛片在线免费播放| 亚州精品国产精品乱码不99按摩| 成人精品啪啪欧美成| 国产高清免费av| 麻豆果冻传媒精品国产苹果| 国产亚洲精品久久久久久入口 | 国产精品视频全国免费观看| 黑人精品一区二区| 欧美+超清+无码| 国产精品自产拍在线观看中文 | 中国女人熟毛茸茸a毛片| 亚洲乱码国产乱码精品精软件| 精品国产国语对白av优播av| assfree疯狂老妇熟女| 五月丁香六月综合缴情在线| 影音先锋+拘束+高潮| 波多野结VS黑人无码| 国产乱码久久久久久| 夜夜高潮夜夜爽精品欧美做爰| 97视频+国产日韩欧美| 欧美日韩国产在线人成| 水蜜挑国产成人精品视频| 日韩视频在线观看免费| 妖精视频一区二区| 久久青青草原精品国产app| 国产主播一区二区三区| 好大好湿好硬顶到了好爽视频| 网友自拍+偷窥+国产| 精品久久久久国产一区二区| av网站在线观看不卡| 中文字幕人妻丝袜成熟九色| assfree疯狂老妇熟女| 亚洲欧美综合在线观看 | 国产成人av不卡免费观看| 国产精品成人免费播放| 国产精品久久婷婷六月丁香| 亚洲中文字幕在线第二页| 女人高潮奶头翘起来了| 精品亚洲国产成人av制服丝袜| 18禁黄网站禁片免费观看女女 | 久久久综合888免费视频| 91欧美激情免费一区二区| 91日日躁夜夜躁欧美五月| 欧美一级在线a级在线视频| 亚洲熟女综合色一区二区三区| 动漫成年美女h漫网站漫画| 亚洲真人久久99精品| 亚洲国产中文欧美日韩另类| 近親伦一区二区三区| 一本到12不卡视频在线dvd| 大地资源二中文在线观看下载| 一个人看的视频www中文字幕| 亚洲国产中文字幕无线乱码| 精品久久久噜噜噜久久| 亚洲а∨天堂+久久精品| 国产精品久久久91| 美女视频图片久久黄网站| 中文字幕a片视频一区二区| 亚洲高清国产av一二三区| 爆乳亚洲一区二区'| 尤物网站视频免费看| 偷拍东北熟女乱xxxxx| 91偷拍精品一区二区三区| 人摸人人人澡人人超碰手机版| 国产精品情侣呻吟对白视频| 亚洲ⅴa欧美ⅴa人人爽久| 狠狠色丁香婷婷综合久久图片| 少妇内射兰兰久久| 国产黄色在线网站| 中文文字幕一区二区三三| 男女做爽爽爽网站| 高清国产午夜精品久久久久久| 久久久国产精华液999999| 欧美成人黄色免费在线网站| 国产又猛又黄又爽| 久久精品国产亚洲七七 | 真实粗暴交videos尖叫| 成人免费视频538国产网站| 国产一级片免费观看| 中文字幕永久视频| 国产精品久久久久久妇女6080 | 久久99av无色码人妻蜜柚| 亚洲色18禁成人网站www| 又粗又猛又爽又黄的视频| 午夜精品久久久久久久四虎美女版 | 暴雨入室侵犯进出肉体免费观看 | 精品国产亚洲av麻豆gif| 欧美一区二区三区视频| 久久婷婷人人澡人人喊人人爽| 四川乱子伦农村露脸| 亚洲第一成年免费网站| 在线人视频观看免费| 小黄鸭+av导航+在线| 女人同房高潮后松手能恢复吗| 国产成人高清视频| 国产精品一区二区三区va| 日本道免费精品一区二区| 国产娇喘喷水呻吟在线观看| 国产特级黄片视频免费在线观看| 国产精品一区二区三区女同| 国产成a人片在线观看麻豆| 国产精品成人亚洲777| 99热九九热精品在这里做| 国产一区二区精品久久| 啊轻点灬太粗嗯太深了蜜桃av| 东京热无码人妻系列综合网站| 日韩特级无码av中文字幕| 日日摸日日碰人妻无码| 国产综合一区在线观看97| 高潮+白浆+在线观看| 亚洲国产日韩成人a在线欧美| 尹人久久久香蕉精品| 蜜桃传媒人版在线观看免费| 日韩欧美中文字幕视频在线看 | 精品久久久久久免费观看| 国产精品日韩av网站国产女人| 12裸体自慰免费观看网站| 中文字幕+乱码+中文字幕视频| 天干夜天干夜天天免费视频| 黄网站在线免费永久观看| 亚洲人妻内射一区二区三区| 女人17片毛片90分钟| 亚洲精品少妇影院| 蜜桃臀久久久蜜桃臀久久久蜜桃臀 | 亚洲精品av中文字幕在线| gogogo高清在线播放免费观看如果奔跑是湘 | 亚洲综合国产精品第一页| 久久只精品99品免费久23| 国产日韩欧美亚洲一区二区三区| 色欲AⅤ亚洲情无码AV蜜桃 | 羞羞影院午夜男女爽爽免费| 精品人妻av区乱码色片| 国产+日韩+欧美精品| 国产aaaaaa| 国产VA免费精品高清在线| 亚洲高清www色好看美女| AV不卡在线永久免费观看| 黄色片网站在线观看| 精品国产亚洲av丝袜高跟| 成人国产精品久久| 国产另类xxxx| 91精品aa一区二区三区| 国产91麻豆一区二区在线| 亚洲+欧洲+国产中文字幕 | 精品亚洲成熟女人www| 亚洲精品www久久久久久软件| 国产+亚洲+欧洲| 亚洲日本在线观看| 日本一区二区免费在线观看| 亚洲爆乳成av人在线蜜芽| 污18禁污色黄网站免费观看| 女女女女女裸体处开bbb| 欧美在线一二三区| 国产精品va在线播放我和闺蜜| 看全色黄大色黄大片爽一次| 麻豆国产尤物av尤物在线看| 天堂va久久久噜噜噜久久va| 中国老妇淫片bbb| 亚洲欧美在线视频观看| 亚洲国产美女精品久久久久∴| 91精品国产色综合久久不卡98| 亚洲日韩av一区二区三区四区| 国产不卡中文字幕在线观看| 99久久久久免费精品国产| 亚洲av成熟国产一区二区三区 | 日韩美女免费毛片一区二区| 国产+闺蜜+磁力链接| 国产乱子伦视频一区二区三区| av不卡国产在线观看| 日本xxxxl码在中国是几码| 精品无人国产偷自产在线| 国产又粗又硬又大爽黄| 久久精品苍井空精品久久| 日韩精品一区二区三区中文| 波多野结衣美女中文字幕视频| 色噜噜狠狠色综合日日| 超碰97国产精品人人cao| 亚洲一区二区美女在线观看| 午夜理论欧美理论片| 五月狠狠亚洲小说专区 | 久久婷婷狠狠综合激情| 中日韩乱码一二新区| 高清亚洲中文字幕在线观看| 日韩一区欧美激情校园春色| gogogo手机高清视频免费观看| 久久精品国产成人av| 在线看不卡毛片a一区二区| 日韩精品久久久久久久的张开腿让| 天天天欲色欲色www免费| 欧美黑人喷潮水xxxx| 激情+国产+精品| 加勒比东京热一本大道| 亚洲美女视频之国产精品| 三年在线观看大全免费高清| 久久精品亚洲熟妇少妇任你躁| 最近2018中文字幕在线视频| 国产日韩欧美手机在线视频| 国产+很黄+视频| 亚洲国产人成自久久国产| 国产精品卡1卡2卡三卡四| B老骚B老熟B老太中国老骚B| 国产精品久久久久久超碰 | 天天躁日日躁狠狠躁免费麻豆| 无码精品人妻系列| 二区视频在线观看| 日本熟妇无码一区二区 | 欧美色欧美亚洲日韩在线播放| 国产在线看片免费观看| 破了亲妺妺的处免费视频国产| 国产精品永久久久久久久| 精品久久国产字幕高潮一| 亚洲欧洲日产国码中学| 淫臀艳妇(全)王雪琴| 熟女老阿V8888AV| 成人一区二区在线播放| 亚洲精品国男人在线视频| 欧美亚洲人成在线观看网站| 日韩精品一区二区Av在线| 日韩激情+一区二区三区+中文字幕| 免费+网站+国产| 国内精品久久久久久网站| 真人床震高潮全部视频免费| 99国产精品久久久蜜芽| 在线视频国产99| 日韩亚洲国产中文永久| 女人被狂c到高潮视频网站| 午夜婷婷精品午夜无码a片影院| aaa女人18毛片水真多| 熟妇激情内射com| 狠狠色丁香婷婷久久综合蜜芽| 日韩中文字幕在线观看| 成人看黄色s一级大片| 国产成人三级一区二区在线观看一| 99久久久精品免费国产| 国产亚洲综合欧美一区二区| 91中文字日产乱幕4区| 日韩国产欧美综合| 久久精品视频久久| 欧美综合在线观看视频| 丝袜+欧美+国产| 少妇熟女视频网站一区二区三区 | 窝窝影院在线观看免费高清电视剧下 | 亚洲AV色综成人网| 丁香花高清在线完整版| 久久天天躁狠狠躁夜夜不卡| 无码AV最新无码AV专区| 国产精品久久久精品三级18| 国产精品午夜久久小视频| 久久久久国产aa一区二区三区| star+433+影音先锋| 亚洲婷婷综合色高清在线| 日韩毛片+高清+下载| 日本乱码一区二区三区不卡| 亚洲国产人成一区二区精品区| 乱码一区二区三区水牛| 强开小婷嫩苞又嫩又紧韩国视频| 久久久久无码精品亚洲日韩| 日日躁夜夜摸月月添添添| 洗濯屋+无码+迅雷| 国产精品一区二区色综合| 中文字幕丰满乱孑伦无码专区| 69大片视频免费观看视频| 日本一区二区不卡黄色视频| 国产美女www爽爽爽免费视频| 亚洲国产av午夜精品一区| 亚洲禁18久人片| 亚洲视频一区亚洲视频一区| 在线看片免费人成视频国产片| 吸舌添泬的A片视频| 不卡一区二区在线视频观看| 高潮+白浆+在线观看| 挺进肉丝熟妇老师的身体视频| 午夜久久久久久久| yjizz视频网| 98精品偷拍视频一区二区三区| 日韩永久精品视频免费wwwa| 欧美成aⅴ人高清免费观看| 最新版天堂资源中文在线| 成人国产热播资源| gogogo高清在线播放免费观看| 久久精品国产欧美日韩亚洲| 欧美狠狠入鲁的视频| 国产在线视欧美亚综合| 妺妺窝人体色www聚色窝| 午夜成人片在线观看免费播放| 小s货又想挨c了叫大声点男男 | 无码人妻少妇久久中文字幕蜜桃| 伊人久久精品大色欧美二区药| 国产成人最新三级在线视频| 视频一区视频二区制服丝袜| 少妇爆乳无码专区| 亚洲欧洲一区二区在线观看| 亚洲+成人+国产| 国内精品久久久久久网站| 精品亚洲中文字幕东京热网站 | BBBBB女女女女BBBB| 国产最爽乱淫视频国语对白 | 精品国产一区二区三区久久久久| 国产精品人妖ts系列视频| 8x永久华人成年免费| 国产成人精品一区二区| 国产三级免费观看| 日本高清在线www3344| 国产内射一区二区xxx| 精品在线观看一区| 亚洲AV一二三又爽又色又色| 日本欧美一级aaaaa毛片| 久久精品国产精品亚洲下载| 九九九九大陆成人综合精品| 特级精品一α级毛片视频| 亚洲愉拍99热成人精品热| 国产亚州精品女人久久久久久| 国产精品久久久久久亚洲a| 日本老熟欧美老熟妇| 亚洲av成人一区国产精品一| 一本一道av无码中文字幕﹣百度| 天堂资源wwwav啪啪| 99久久人妻网站噜噜噜 | 日韩视频网站在线观看| 91日本人妻精品一区二区| 久久久久久久曰本精品免费看| 国产农村乱人伦精品视频| 99亚洲精品在线视频观看| 人体极品粉鮑欣赏91| 成年人在线观看视频| 亚洲日本中文字幕在线四区 | 在线观看国产视频| 欧美日韩国产一区二区三区在线| 冢本六十路の高齢熟女| 中文字幕日韩精品有码视频| 日韩av资源在线| 视频毛片下载蜜桃视频1| 亚洲aaaaaaa| 国产精品一区二区色综合| 亚洲一区二区在线精品| 最近更新中文字幕2019视频| 亚洲精品综合在线| 久久天天躁狠狠躁夜夜不卡| 一级大片在线观看| 男人的天堂免费视频| 成人做爰黄级a片免费看土方| 男女久久久国产一区二区三区| 国产成a人亚洲精品在线观看| 欧美成人三级在线观看| 青青色国产手机在线观看| 155fun黑料热点事件| 欧美日韩免费高清一区色橹橹 | 巨大荫蒂视频欧美另类大| 日韩一级二级视频| 初撮り五十路老女人| 激情综合丁香五月| 91看片淫黄大片一级在线观看| 亚洲黄色一区大陆av剧情| 波多野结衣被躁120分钟小说| 爽爽爽a男女免费观看一区二区| 中文字幕+乱码+中文字幕无忧| 精品一区二区三区国产| 国产在线视频一区二区三区| 九九热这里的都是精品| 蜜臀av国内精品久久久| 国产+在线+激情| 亚洲一区二区天堂| 丰满人妻熟妇乱又伦精品劲| 国产精品久久久久久久模特人妻| 亚洲Av无码一区二区三区天堂| 久草在视频免费福利| 自慰系列无码专区| 欧美一区二区在线播放| 在线亚洲精品国产二区图片欧美 | 亚洲成熟女人一区二区三区| 国产男女无遮挡猛进猛出| 国产精品久久久久久免费播放| 婷婷五月六月激情综合色中文字幕| 久久国产精品亚洲一区二区三区| 亚洲+欧美+综合| 中文字字幕永久在线观看| 日本大片又大又好看的PPT模板视频| 亚洲精品无码av中文字幕| 青青草97国产精品免费观看| 亚洲精品区午夜亚洲精品区| 果冻天美麻豆一区二区国产| 波多野结衣被躁50分钟| 婷婷亚洲久悠悠色悠在线播放| 久久精品免费成人| 强奷漂亮少妇高潮麻豆| 久久九九视频观看97香蕉国产| 国产女人高潮视频在线观看| 国产70老熟女重口小伙子| 久久久91色精品国产一区| 日韩欧美亚洲国产第一页| 一本大道HEYZO乱码专区在破解| 国产愉拍自拍中文在线| 茄子香蕉榴莲草莓丝瓜绿巨人污| 四虎影视最新免费版| 久久久久久自慰出白浆| 鲁大师影院在线观看| 精品人妻艳妇嫩草AV少妇| 尤物在线观看免费网址| 国内久久精品视频| www.91自拍| 日韩欧美三级在线| 色视频免费在线观看| 老熟妇乱子交视频一区| 免费国产又色又爽又黄的网站| 亚洲日本乱码一区二区三区| 在线看片人成视频免费无遮挡 | 欧美偷窥清纯综合图区动图| 国产农村乱人伦精品视频| 精品亚洲国产成人av在线| 无遮挡又黄又爽的免费视频| 成人精品日韩一区二区蜜臀| 天堂视频在线观看一二三区| 初撮り五十路老女人| 亚洲欧美另类激情| 亚洲欧洲免费黄色视频| 24小时日本mv在线视频| 亚洲a∨大乳天堂在线| 亚洲午夜精品一区| 黄色一级在线视频| 欧美日本一区二区三区免费| 国产又粗又猛又爽又黄4| 欧美乱码精品一区二区| аⅴ天堂中文在线| 亚洲AV成人无码精品| 久久91综合国产91久久精品| 中文字幕一区二区精品区| 妈妈你真棒插曲mv在线观看免费| 18+动漫视频网站| 乱子伦息子一区二区| 国产精品成人免费视频网站| 国产美女无套爽到高潮视频 | 精品人人妻人人爽人人牛牛| 91在线91拍拍在线91| 国产亚洲精品福利视频在线观看| 婷婷色国产偷v国产偷v小说| 在线观看国产一区二区av| 亚洲日韩欧洲无码av夜夜摸| 国产成人精品三级在线影院| 91精品啪在线观看国产81旧版| 日本国产成人国产在线播放 | aa亚洲永久免费精品免费| 国产精品欧美一区二区三区不卡 | 儿子的妻子6免费观看电视剧| 水牛影视一区二区三区久| 在线观看免费人成视频色| 色噜噜www亚洲男人天堂| 亚洲+国产+专区| 久久人人爽人人爽人人片dvd| 精品国产制服丝袜高跟| 97青草超碰久久国内精品91| gogogo高清在线播放免费观看| 一区二区国产日韩欧美综合| 国产成人一区二区三区在线播放 | 亚洲一区二区精品视频在线观看| 欧美激情视频一区二区三区不卡| 在线精品视频一区二区三四| 国产极品美女高潮无套久久| 国产成人亚洲日韩欧美久久| 丰满少妇高潮在线观看| 【精品国产】乱子伦海角论坛| 亚洲成在人网站av天堂| 一区二区三区在线观看视频| 精品国际久久久久999波多野| 97午夜理论片影院在线播放| 蜜臀精品国产高清在线观看| 免费+欧美成人+一区二区三区| 国产又黄又粗又爽又色的视频| 中文字幕国产专区欧美激情| 日本老熟妇乱子伦精品| 美女黄网站色视频免费观看| 日本少妇中文一区在线激情| 免费看片亚洲一区二区三区| 欧美午夜福利理论片久久| 久9久9精品视频在线观看| 美女视频图片久久黄网站| 国产+日产+欧美| 欧美成人精品区在线观看| 麻豆国产网站入口| 在线播放+国产+清纯| 国产精品视频麻豆| 精品午夜福利1000在线观看| 在线观看+成人免费视频+不卡| 伊人69久久久久久综合国产| 成人午夜高潮免费视频在线观看| 国产精品久久久久久亚洲AV| 欧美日韩国产欧美日美国产精品| 欧美中文字幕在线| 国产黄色福利网站| 超清中文乱码字幕在线观看 | 骚虎成人免费99xx| 麻豆天美国产一区在线播放| 久久97精品久久久久久久不卡| 国产精品主播一区二区三区 | 国产公开久久人人97超碰| 欧美巨茎A片在线观看| 热99久久精品这里都是精品| 亚洲欧美日韩人成在线播放 | 国内久久精品视频| 国产97在线观看| 2020中文字字幕在线不卡 | 影音先锋+出轨的妻子| 欧美阿v高清资源不卡在线播放| 久久这里只有是精品17| 84pao国产成视频永久免费| 四虎地址8848精品| 久久99国产精品黄色片| 伊人精品久久久久中文字幕| 黄色av网址在线| 香蕉久久久久久久AV网站| 亚洲一区二区三区黄色| 久久99国产综合精品女下载同| 乌克兰女人大白屁股ass| 久久久久久日产精品| 久久精品国产—精品国产| 欧美综合在线观看视频| 欧美+国产+麻豆| 国产精品一品二区三区四区18| 国产一国产二国产三| 国产麻传媒精品国产AV| 男人a天堂手机在线版| 中文在线观看免费高清电视剧 | 日本日本乱码伦专区| 五月天婷婷激情网| 亚洲Av无码一区二区三区天堂 | 日本一级理论片在线大全| 欧美一区二区视频国产精品| 国产精品卡一卡二卡三| 国产午夜福利精品久久不卡| 国语对白刺激在线视频国产网红 | 中文字幕欧美日韩va免费视频| 99久久有精品国产婷婷外女 | 日本欧美精91品成人久久久| 国产午夜精品18| 国产成人一区二区三区在线播放| 国产又粗又黄又硬又爽的毛片| 99re在线观看视频在线观| 亚洲欧美在线视频观看| 亚洲美女免费视频福利试看| 国产午夜草莓视频在线观看| 国产高清视频在线观看免费视频| 亚洲免费成人av| 国内外免费激情视频| 黑人按摩人妻HD中字5| 99re6在线观看| 可以看国产精品视频的网站| 国产+剧情+喷水| 日本老熟欧美老熟妇| 18禁美女无遮挡在线看| 国产+高潮+精品| 在线精品一区二区三区| 成版人看片app私人影院| 自在自线亚洲а∨天堂在线| 男人a天堂手机在线版| 国产麻豆一精品一男同| 怡红院一区二区三区在线| 久久久www成人免费精品| 日本任你躁免费精品视频2| 国产精品刘玥久久一区| 久久这里只有是精品23| 巜按摩泄欲中文字幕| 国产传媒麻豆剧精品av国产| 黄色网页在线观看| 九色在线观看视频| 亚洲乱码国产乱码精品精软件| 波多野无码肉欲HD| 欧美精品v国产精品v日韩精品| 精品视频无码一区二区三区| 精品无人区麻豆乱码1区2区| 天堂在线免费观看视频www| yy6080久久亚洲精品| 国产成人精品无缓存在线播放 | 中文字幕Aⅴ人妻一区二区| 麻豆美女丝袜人妻中文| 国产在线看片免费观看| 国产+亚洲+制服| 国内精品伊人久久久久av一坑| 安徽妇搡BBB搡BBBB户外老太太| 久久精品视频在线看4| 一级做a爰片久久毛片高清流畅| 24小时日本mv在线视频| 麻豆果冻国产剧情av在线播放| 亚洲欧美激情另类图片小说| 12裸体自慰免费观看网站| 天堂va蜜桃一区二区三区| 深夜福利在线播放| 一本色道久久精品| 毛片网站免费在线观看| 亚洲欧美一区二区三区四区五区| 亚洲日本一区不卡在线观看| 一级做a爰片久久毛片a| 岛国片在线播放97| 免费看av的网址| 狠狠色丁香婷婷综合久久图片| 中文无码一区二区不卡AV| 久久久青草青青亚洲国产免观| 欧美一区二区激情视频| 99久久国产综合精品五月天喷水| 亚洲欧美中文字幕变态另类 | star+433+影音先锋| 日韩免费无码专区精品观看| 波多野结VS黑人无码| 亚洲精品乱码久久久久蜜桃 | 亚洲又黑又粗又硬又爽视频| www.亚洲最全福利视频网站| 欧美污视频免费在线观看| 男人操女人免费看网站亚洲欧美| 欧美精品一区二区三区蜜桃臀| 视频毛片下载蜜桃视频1| 四lllBBBB槡BBBB视频| 久草热久草热线频97精品| 美女视频网站在线观看污| 西西444WWW无码视频软件功能介绍| 十八岁成年免费观看电视连续剧法国| 国产+日产+欧美在线观看| 卡一卡二卡三专区免费| 国产欧美日韩一区二区三区66| 日本久久一级网站一欧美精品| 国产欧美一区二区精品久久久| 美女视频一区二区在线观看| 一个人在线观看免费视频www| 国产精品久久久久久久一级| 美女网站免费福利视频| 欧美群交射精内射颜射潮喷| 成人午夜三级视频| 国产高清精品久久久久久久| 在线观看日本午夜高清美女| 日本一区二区不卡黄色视频| 国产羞羞的视频在线免费观看 | 亚洲精品国产中文字幕在线| 蜜乳av中文字幕| 中年熟女の绝顶中出| 日韩精品视频在线观看三区| 欧美精品欧美极品欧美激情| 午夜小视频免费观看| 久久99久久99精品免观看粉嫩| 一本一道久久综合狠狠老| 国产激情综合五月久久| 国产精品久久久久久影院| 中国猛少妇色xxxxx| 人妻无码一区二区三区免费| 久久天天躁夜夜躁狠狠85| 国产无套粉嫩白浆在线| 永久综合精品网站在线免费观看| 欧美在线视频在线观看一区| a片+磁力+下载| 国产在线一区二区香蕉| 曰本a∨久久综合久久| 国产精品无需播放器在线观看| 欧美综合区自拍亚洲综合绿色| 久久99久国产麻精品66| 免费男女羞羞的视频网站+192.168.0.1| 高潮+喷水+免费| 人妻中文字幕一区三区5| 又色又爽又黄的视频女女| 人妻无码av一区二区三区精品| 亚洲婷婷天堂在线综合| 久久99热这里只有精品23 | 日韩本毛片高清免费视频| 午夜在线不卡精品国产| 亚洲欧美综合精品另类天天更新| 午夜成人片在线观看免费播放 | 成人羞羞国产免费软件小说| 麻豆免费在线观看视频| 少妇人妻偷人精品视频免费| 精品多毛少妇人妻AV免费久久| 国产后进白嫩翘臀在线播放| 麻花传媒人妻引诱水电工| 好男人在线影院官网www| 69精品人人人人人人人人人| 99久久婷婷国产综合精品| 国产在线麻豆在拍91精品| 99久久人妻网站噜噜噜| 免费+五码+国产| 国产精品日本一区二区不卡视频| 国产福利专区视频在线播放| 8090成人午夜精品无码| 亚洲精品有码在线观看| 91香蕉视频国产在线观看| 日本久久久久久科技有限公司| 99久久精品国产综合| a片+影音先锋资源网站| 91丨九色丨黑人外教| 国产精品vr虚拟专区| 欧美日韩福利视频一区二区| 中文字幕日逼网站| 久久久久久人妻中文字幕| 亚洲综合色区中文字幕| 国产互换人妻5P| 国产精品岛国久久久久久久久红粉| 最近更新中文字幕2019视频 | 亚洲精品国产一区二区三区在线观看| 日韩国产精品视频| 国产精品成熟老妇女| 久久亚洲精品久久国产一区二区| 亚洲成在人网站av天堂| 大粗鳮巴征服女教师| 黄色片网站在线观看| 夜夜嗨av一区二区三区| 99久久久国产精品一区| 欧美精品v欧洲高清视频在线观看| 国产精品不卡av| 久久成人免费精品网站| 欧美+日本+国产| 国产精品午夜小视频观看| 18+免费+日韩毛片| 亚洲综合精品一区二区三区| 懂色av蜜臀av粉嫩av分享吧| 久久人人97超碰国产亚洲人 | www黄色com| www.1314久色.com| 午夜三级a三级三点在线观看| 日本一区二区在线视频网站| 99久久免费精品国产72精品九九 | 亚洲午夜国产一区99re久久| 中美日韩亚洲中文专区| 欧美一级在线a级在线视频| 国产一级特黄毛片在线毛片| 亚洲精品免费观看| 精品一区二区三区四区| 久久精品免费网站| 真人做爰视频成人观看| 韩漫免费漫画在线观看方法| 天堂av国产夫妇精品自在线| 天堂在线天堂新版www| 亚洲一区二区三区国产| 欧洲中文字幕日韩精品成人| 东北夫妻露脸69口爆视频| 久久香蕉综合网精品视频| 国产三级在线三级久操欧美| 日韩精品免费一区二区三区四区| 18+小视频+日韩毛片| 久久人妻无码aⅴ毛片a片动图| 日本欧美国产在线视频一区 | 国产精品久久久久国产三级传媒| 免费的污污污网站在线观看| 日本一区二区三区视频在线观看| 欧洲av成本人在线观看免费| 亚洲国产av午夜精品一区| 精品精品精品国产自| 91视频免费网站| av在线播放日韩亚洲欧| 国产精品一区二区三区va| 爆乳亚洲一区二区'| 国产福利一区二区三区在线视频| 精品欧美国产一区二区三区| 国产真实乱偷精品视频| 国产农村乱人伦精品视频| 国产精品久久久久久成人| 亚洲Av日韩精品久久久久 | 日韩裸体人体欣赏pics| 国产免费看又黄又粗又硬| 窝窝午夜精品国产| 成人小视频免费看| 精品国产一区二区三区在线不卡| 亚洲欧美不卡人妻中文字幕| 特级精品一α级毛片视频| 在线精品亚洲一区二区动态图| 97久久超碰国产精品最新| 中文字幕+乱码+中文字幕在线| 国产精品嫩草77AV麻酥酥| videosxxxx老女人| 免费中文字幕在线观看| 国产精品三级av及在线观看| 国产熟妇另类久久久久久| 亚洲国产av导航第一福利网| 国产女同一区二区三区久久| 欧美一级免费在线观看视频最新 | 国产精品av一区| 香蕉精品视频在线观看| 中文字幕在线观看国产精品| 欧美一区二区三区亚洲国产精品| 国产美女直播亚洲一区久久| а√天堂资源8在线官网在线| 日韩精品视频主播在线播放| 午夜一区二区三区视频观看| 国产99久久久久久免费看农村| 日韩黄片一区二区在线观看| 窝窝午夜精品国产| 6969成人亚洲婷婷| 亚洲AV日韩AV无码黑人| 99国产精品久久久久老师| 深夜国产福利小视频在线观看| 亚洲+欧洲+日韩在线| 人妻+97视频在线观看| 国产+白浆+免费| 欧美亚洲国产另类第一页| 伊人色综合久久天天网| 免费看的av网站| 亚洲a∨精品一区二区三区| 国产精品自在线拍国产| 一区一区三区四区产品动漫| 国产精品美女乱子伦高| 亚洲天堂在线观看视频| 久久99久久99久久综合| 日韩一级片中文字幕| 精品福利一区二区| 成人做爰视频www| 欧美高清在线免费观看视频| 欧美精品黄片一区二区三区| 欧美成人福利视频| 中文字幕国产在线| 一区二区国产精品| 乱码一卡二卡新区永久入口| 成人无码精品1区2区3区免费看| 国产熟妇乱子伦视频在线观看| 日本精品视频在线观看一区| 亚洲AV成人无码精品| 精品无码久久久久久久久久| 国产精品情侣熟女毛片对白看片 | 国产+欧洲+在线观看| 欧美一级在线a级在线视频| 国产一区二区三区欧美在线| 漂亮人妻被黑人久久精品| 四十路の完熟豊満无码| 日韩欧美中文字幕在线视频四区 | 激情午夜福利在线视频观看| 国产99精品最新在线播放| 国产又黄又大视频| 91福利院一区二区三区| 亚洲精品一区二区不卡| 日韩欧美国产一区二区| 国产亚洲综合一区二区三区| 空姐吹箫完整版mv| 日韩+成人+熟女| 久久国产精品精品| 亚洲精品久久久久久久久av无码| 91一区二区国产精华液| 欧美成人精品一级乱黄| 黑人与人妻无码中字视频| 国产+日本+高潮| 国产成人精品自拍| 很黄的视频国产在线观看| 午夜久久久久久久| 成人综合另类国产色视频| 特级特黄AAAAAAAA片无锁| 日本精品少妇一区二区三区| 欧美日韩国产动漫在线| 国产乱子伦视频一区二区三区| 少妇精品综合无码| 国内大量揄拍人妻精品视频| 亚洲AV无码乱码精品观看明里| 精品国产av一区二区三区蜜臀| 国产午夜福利久久精品| 午夜永久精品视频在线看| 国产成人精品a视频一区| 最新av网址在线观看| 一区二区日韩视频| 亚洲精品国精品久久99热一| 人妖+码+在线观看| 成年美女黄网色视频免费4399 | 中文有码人妻熟女久久| 日本精品videosse×少妇 | 久久久久久老熟女国产999| 91精品综合久久久久久五月天| 88国产精品视频一区二区三区| 大胆欧美高清videosedexohd| 国产精品美女无遮挡在线观看| 国内大量揄拍人妻精品视频| 久久精品视频国产| 最近中文字幕++中文| 丰满的三级少妇欧美久久| 一区二区三区精品视频免费播放| 黄金网站app大全免费| 久久人人97超碰国产精品| 日韩精品国产一区在线久草 | 亚洲精品丝袜国产自在线| 妖精视频一区二区| 国产精品三级一区二区| 懂色av蜜臀av粉嫩av分享吧最新章节| 在线观看的av网址| 黑人巨鞭波多野结衣| 午夜小视频免费观看| 国产日韩av在线| 665566综合中文字幕在线 | 又粗又黄又爽视频免费看| 国产又黄又粗又硬的视频| 亚洲欧美精品久久久久| 亚洲丶国产丶欧美一区二区三区| 91av在线视频观看| 在线观看国产成人尤物av天堂 | 按摩+无码+中文| 少妇人妻偷人精品视蜜桃| 18+动漫视频网站| 精品无人区麻豆乱码1区2区| 一点不卡v中文字幕在线| 国产又粗又黄又硬又爽的毛片| 伊在人亚洲香蕉精品区| 亚洲中文字幕阿阿视频在线| 人妻激情乱人伦视频| 色婷婷五月综合亚洲小说| 国产精品一区二区五月天| 国产成人在线精品| 亚洲精品欧美精品在线观看视频| 国产又爽又黄又舒服的视频| 美女+高潮+国产| 免费在线观看网址入口| 亚洲成色A片77777在线小说| 成人午夜片在线免费观看| 亚洲天堂在线视频观看| 久久久精品午夜国产免费| 天堂视频中文在线| 亚洲色偷偷色噜噜狠狠99网| 7777久久久国产精品消防器材| 中国国产野外1级毛片视频| 特级西西444www大胆免费看| 熟妇槡BBBB槡BBBB| 午夜在线观看网站| 国产精品久久久久久久无毒| 日韩精品久久久久久希崎杰西卡| 欧美一区二区三区大片| 久久久91色精品国产一区| 久久久久久久av麻豆果冻| 精品96久久久久久中文字幕无| 成人做爰高潮片免费视频| 亚洲国产成人av| 亚洲欧美综合精品另类天天更新| 国产午夜影视大全免费观看| 亚洲一卡二卡三卡| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 精品国产av一区二区三区四区 | 国产精品女同一区二区久| 久久免费一区二区三区国产| 黑人按摩人妻HD中字3| 射进来av影视网| 色欲AⅤ亚洲情无码AV蜜桃 | 亚洲精品成人av| 国产美女视频免费观看www| 女人18片毛片90分钟| 国产精品夜间视频香蕉酒店| 国产又黄又爽又猛视频在线观看 | 另类国产ts人妖高潮系列视频| 一区二区不卡免费视频| 一区二区免费高清观看国产丝瓜 | 无码aⅴ精品一区二区三区浪潮| 99久久人妻网站噜噜噜| www.亚洲欧美成人影院| 亚洲国产初高中生女手机视频网| 成人av在线资源| 成人无码一区二区三区网站| 在线观看免费人成视频播放| 成人免费视频播放| 国产边打电话边做对白刺激| 国产黄a三级三级三级av在线看| 日韩美女高潮喷水免费看| 久草香蕉在线视频国产乱码精品一区二区三上 | 免费啪视频观在线视频在线| 欧美老妇bbbwwbbbww| 精品久久久久久国产免费| 成人做爰黄A片免费看陈冠希| 欧美成人aaaa免费全部观看| 黄色网页在线播放| 国产精品国精产品一二三区| 国产主播一区二区不卡在线观看 | 色综合色欲色综合色综合色综合r 国产粉嫩呻吟一区二区三区 | 日日噜噜夜夜狠狠久久av小说| 亚洲+熟女+丝袜| 三级高清中文欧美| 精精国产xxxx视频在线观看| 国产a视频精品免费观看| 欧美精品久久久久久久久大尺度 | 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 久久久精品2019免费观看| 亚洲美女网站免费观看一区| 少妇无码自慰毛片久久久久久| 国产精品成人久久久久| 精品99一卡2卡三卡4卡| 国产亲子乱弄免费视频| 99久久人妻网站噜噜噜| 欧美一级视频在线观看三级 | 欧美日韩国产一区二区三区| 亚洲精品欧美精品在线观看视频| 国产精品尤物铁牛tv| 亚洲欧美精品中文字幕一区二区 | 免费激情视频网站| 久久精品道一区二区三区| 99久久99久久精品免费看蜜桃| 日韩美女免费线视频| 国产精品岛国久久久久久| 中文字幕乱码av一区二区三区| 色情无码一区二区三区| 国产精品色婷婷久久99精品 | 国产欧美日韩一区二区三区在线 | 国产乱人伦无无码视频试看| 午夜精品乱人伦小说区| 久艹在线观看视频| 成人乱淫av日日摸夜夜爽节目| 在线日韩av永久免费观看| 欧美一级一级一级| 制服肉丝袜亚洲中文字幕 | 一区二区免费高清观看国产丝瓜 | 国产在线精品一区二区三区不卡| 99精品视频一区在线观看| 国产又黄又爽又色视频免视频 | 日本高清视频一区| 日本无乱码高清在线观看| 国内自拍av手机在线免费观看| 国产偷人妻精品一区二区在线 | 强伦少妇A片视频| 国产人免费人成免费视频| 久久精品国产亚洲av成人久久 | 男女做爽爽爽网站| 日本熟妇50乱偷交尾| 亚洲欧美日韩国产一区二区在线 | a片+磁力+下载| 好吊妞视频这里有精品| 色综合天天综合欧美综合| 永久免费未满蜜桃| 国产一区二区三区四区| 别揉我奶头~嗯~啊~少妇| 国产男女视频在线免费观看| 久久se精品一区二区| 在线亚洲一区二区| 国产乱淫av片杨贵妃| 成人午夜视频在线观看| 亚洲精品成人av| 高潮少妇高潮久久精品99| 日韩精品人妻2022无码中文字幕| 免费+群p+视频| 熟妇人妻无乱码中文字幕真矢织江 | 日韩精品一区二区三区+在线观看| 波多野结衣黑人149分钟| 免费AV在线播放| 国产xxxx视频在线观看| 18禁黄网站禁片免费观看女女 | 亚洲+综合+欧美| 亚洲乱码国产乱码精品精姦| 大粗鳮巴征服女教师| 不卡一区二区在线视频观看| 日日噜噜夜夜狠狠久久无码区| 精品无码成人久久久久久| 日韩欧美亚洲国产第一页| av久久悠悠天堂影音网址| 久久国产亚洲高清观看| 成人午夜片免费在线观看| 亚洲精品久久久久久中文传媒| 亚洲欧美精品中文一区二区三 | 亚洲精品一区久久久久久| 日本精品免费在线观看| 99久久精品国产亚洲| 色偷偷偷久久伊人大杳蕉| 久久久精品国产sm调教网站| 精品国产一区二区三区久| 十八禁污视频在线观看无遮挡| 免费网站永久免费入口| 北条麻妃一区二区三区四区五区| 老司机免费的精品视频| 日韩精品视频免费看| 天堂久久久久va久久久久| 久久精品国产亚洲七七 | 亚洲日韩精品区二区av| 国产艳妇av在线| 国产色哟哟免费在线观看| 偷窥+国产+综合| 97色婷婷综合缴情在线播放| 国产日韩欧美在线一区二区三区| 亚洲欧美自拍另类| 国产精品aaaa| 妺妺窝人体色www在线小说| 亚洲系列中文字幕| 亚洲美女中字幕视频在线观看| 国产精品一二三区在线观看| 粉嫩小泬无遮挡BBBBB图片| 精品久久久久久777米琪桃花| 亚洲va久久久噜噜噜熟女软件| 久久婷婷五月综合色国产免费观看| 欧美巨茎A片在线观看| 国产对白叫床清晰在线播放图片| 成人H动漫精品一区二区无码软件| 乖灬舒服灬别拔出来灬男男| 国产日韩精品欧美一区喷水| 《喂奶人妻厨房HD》| 大帝av在线一区二区三区| 精品一区二区三区四区视频观看| 亚洲va中文慕无码久久av| 国产+欧美+欧洲| 精品亚洲中文字幕东京热网站 | 精品国产福利视频在线观看| 国产精品女同久久免费观看| 亚洲一区二区三区在线观看精品中文| 亚洲AV高清无码| 665566综合中文字幕在线| 国产精品亚洲综合久久系列| 成人毛片视频免费看| 无码一区二区波多野播放搜索 | 一区二区三区国产日韩欧美在线 | yy6080久久亚洲精品| 丰满少妇人妻久久久久久 | 亚洲AV高清无码| 欧美午夜精品久久久久久白云| 成人免费视频538国产网站| 日本爽爽爽爽爽爽在线观看免| 国产精品h片在线播放| 免费黄色片一区二区三区| 国产精品白嫩极品美女| 中文+日韩+欧美| 日本一区二区最黄最色视频| 亚洲国产精品成人综合色区| 国内精品久久久久久无码| 亚洲欧洲精品成人| 日韩在线亚洲综合| 国产熟女高潮精品视频区| 牛牛在线免费视频| 亚洲最大日夜无码中文字幕| 三年片在线观看免费观看大全+下载| 区一区二在线观看| 99热久久最新地址| 黑人巨鞭大战欧美熟妇| 亚洲精品美女久久久久9999| 久久99精品久久久久久不卡| 卧室大战欧美肉丝丝袜| 亚洲乱码国产乱码精品精软件| 日本内射精品一区二区视频| 亚洲av片一区二区三区久久| 麻豆黑色丝袜jk制服福利网站| 手机在线看片1024| av在线免费网站| 国产又黄又爽又色的免费视频| 国产精品区一区二区在线观看| 国产成人午夜福利在线观看| 波多野结VS黑人无码| 亚洲综合色aaa成人无码| 秋霞鲁丝片Av无码少妇| 日韩精品av在线免费观看| 亚洲专区在线91福利网| 99在线视频一区二区三区| 少妇精品揄拍高潮少妇| 拍拍拍产国影院在线观看| 国产女主播精品大秀系列| 柳州莫菁菁av一区| 18+av在线免费| 欧洲精品色在线视频看看| 国产麻豆一精品一av一免费| www.久久av| 国产在线观看www污污污| 日韩欧美精品一区二区三区四区| 丰满人妻做爰2理伦片免费看| 国产高清精品一区二区三区| 日韩高清在线亚洲专区小说| 精品乱码久久久久久久| 欧美+日韩+国产在线| 亚洲天天做夜夜做天天欢人人| 青青草国产免费国产是公开| 欧美日韩国产精品成人| 亚洲欧美一区二区三区日产 | 国产又粗又长又猛黄色视频| 久久亚洲精品无码观看网站| 国产精品视频一区二区在线观看| 日韩一区二区天堂在线观看| 少妇愉情理伦片丰满丰满午夜| 日本69式三人交| 欧美黑人喷潮水xxxx| 香蕉97超级碰碰碰免费| 蜜桃视频在线观看免费网址入口| 99久久免费只有精品国产| 黄色激情视频网站| 久久露脸国语精品国产91 | 蜜臀av无码一区二区三区| 深圳妇女搡BBBB搡BBBB| 7777久久久国产精品消防器材| 精品国产露脸久久av| 国产成人JVID在线播放| 亚洲日本中文字幕在线四区 | 亚洲va欧美va人人爽春色影视| 99国产精品久久久久老师| 久在线观看福利视频| 中文人妻av久久人妻18| 亚洲+小说+欧美| 欧美成人精品三级在线观看播放| 国产一级真人做受| 欧美日韩中文国产| 波多野结衣一区二区三区av高清| 在线观看麻豆国产成人av在线播放| 国产传媒淫语对白AV| 免费香蕉成视频人网站| 久久久久国产精品人妻aⅴ网站| 狠狠色噜噜狠狠狠狠777米奇小说| 欧美一片毛国产在线视频| 年轻的嫂子+磁力链接| 末成年毛片在线播放| jizz久久精品永久免费| 欧美在线人视频在线观看| 手机无码人妻一区二区三区免费 | 在线观看亚洲天堂视频网站 | 国产尤物精品自在拍视频首页| 亚洲欧美日韩国产一区二| 日本无乱码高清在线观看| 久久99热只有频精品8国语| 国产精品人八做人人女人a级刘| 2020国产精品久久久| 狠狠色狠狠色合久久伊人| 美女又爽又黄又免费网站| 99久久精品一区二区| 岛国精品一区二区| 国产小呦泬泬99精品| 久久99精品国产麻豆婷婷| 美女一区二区三区视频在线| a片+影音先锋资源网站| 69xxxxx中国女人| 痉挛高潮喷水av无码免费 | 日韩+成人+熟女| 狂躁欧美肥臀大BBBB| 亚洲永久免费播放片国产| 新大地资源在线影视观看| 波多野结衣《温泉人妻》| 99精品视频在线观看婷婷| 国产毛片久久久久久久18| 精品亚洲永久免费aaaa| 中文字幕无码一区二区免费| 成人做爰a片免费看网站网豆传媒| 中文字幕+乱码+中文在线| 美脚恋足癖一区二区三区| 日韩一区二区三区国产| 久久久99精品成人片中文字幕| 国产伦精品一区二区三区照片| 日本中文字幕一区二区高清在线| 又色又爽又黄还免费视频| 99久久婷婷国产一区二区| 一区二区三区国产乱码a| 国产亚洲人成人网| 国产+在线观看+免费| 在线观看com国产视频| 亚洲欧美自拍另类| 东京亚洲女图片在线观看| 免费网站观看www在线观看| 人妻NP〈慎入〉H在线视频| 毛多水多丰满女人A片| 午夜精品久久久影视优势| 久久久久波多野结衣高潮| 午夜男女免费观看一区二区三区 | 亚洲永久精品国产xxxx| 国产又粗又黄又爽又硬网站| 国产绿帽精黑人X88AV| 久久久久综合一区二区不卡 | 亚洲人成人无码www| 麻花传媒剧国产mv高清播放| 国产av一区二区三区天美| 日本少妇自慰免费完整版| 亚洲综合久久成人av| 精品久久久久久亚洲中文字幕 | 制服丝袜+国产精品+中文字幕| 久久久青草青青亚洲国产免观 | 国产+欧洲+日本| 国产成人a在线观看网站站| 丰满岳乱妇三级高清| 亚洲乱码国产乱码精品精姦| 国产suv精品一区二区6| 欧美黑人xxxx又粗又长| 91亚洲高清视频在线观看| 日韩欧美中文字幕在线视频| 欧美精品一区二区高清在线观看 | 色偷偷中文字幕久久综合| 国产成人免费午夜不卡视频| 69久久夜色精品国产69蝌蚪网| 成人国产精品久久久春色| 乡下人产国偷v产偷v自拍| 久久大香香蕉国产免费网vrr| 综合激情久久综合激情| 日韩永久精品视频免费wwwa| 国产激情久久久久久熟女老人| 国产乱色国产精品免费视频| 人妻无码一区二区三区免费| 亚洲精品久久久久一区二区三区 | 日韩在线一区高清在线| 国产成人精品人人2020视频| 一级二级三级毛片| 婷婷久久久综合一区二区三区 | 久久精品国产只有精品2020| 疯狂欧美大伦交乱| 色婷婷国产精品高潮呻吟av| 99国产精品免费播放| 欧美一区二区三区激情桃蜜臀| 日韩高清在线亚洲专区小说| www.99精品| 免费一级欧美片在线观看欧美| 91在线91拍拍在线91| 少妇人人凹凸XX凹凸爽凹凸| xxxx日本免费| JLZZJLZZ亚洲女人19| 玖玖热麻豆国产精品图片| 成人免费动漫无码大片a毛片| 喂奶试戏NP(高H| 无码人妻精品一区二区三区9厂| 国产99对白在线播放| 辽宁熟女高潮狂叫视频| 日本韩国欧美一区二区三区| 天天爽夜夜爽一区二区三区| 欧美又大又黄又粗高潮免费| 国产亚洲人成网站在线观看| 国产偷人妻精品19p| 国产又粗又长又硬又爽又黄视频| 婷婷开心激情综合五月天| 人妻熟妇女的欲乱系列| 国产精品一区二区av在线| 久久久久久国产精品美女| 99久久精品无码一区二区三区 | 91麻豆精品国产自产在线的 | 欧美孕妇孕交黑巨大网站| 一级香蕉视频在线观看| 亚洲日本中文字幕在线四区| 国产+在线+激情| 91日韩精品久久久久身材苗条| 欧美猛少妇色xxxxx猛叫| 91兰州熟女富婆露脸| 久久成人在线视频| 18+国产在线拍揄自揄视精品| 调教驯服丰满美艳麻麻在线视频| 日韩专区亚洲综合在线观看免费完整版| 欧美巨大xxxx做受中文字幕| 91天堂一区二区在线播放| 女同久久国产精品99国产精品| 一本加勒比HEZYO爆乳| 伊人久久大香线蕉av超碰演员 | 国产做a爰片久久毛片a我的朋友| 欧美+群p+在线观看| 国产+日韩+麻豆| 91探花足浴店少妇在线| 日本一区二区三区专线| 黄片久久久久久久黄片久久 | 国产一区二区三区导航| 俄罗斯A片巜豪妇荡乳| 欧美日韩国产免费观看一区二区| 永久免费未满蜜桃| 播放日韩美女免费毛片视频| 久久精品免费成人| 国产av综合第1页| 制服丝袜诱惑在线观看一二区| 日本三级在线视频| gogogo高清在线播放免费观看| 美女网站一区在线观看免费国产| 亚洲欧美日韩人成在线播放| 美女啊啊啊在线观看国产| 国产又色又爽无遮挡免费| 国产精品第52页| 久久这里只有是精品17| 精品美女自拍99RE热视频这里只精品| 区一区二在线观看| 久久国国产免费999| 成人午夜精品无码区久久| 小视频国产在线观看网站| 辽宁老熟女啪啪对白| 日韩精品――中文字幕| 亚洲+精品+无码视频| 亚洲成av人片天堂网无码】| 欧美+日本+亚洲| 成年美女黄网站色大片免费看| 5g影视+国产+日韩| 青青青国产精品一区二区| 在线天堂中文最新版www| 日本精品中文字幕在线播放| 免费在线观看AV| 久久久午夜精品理论片中文字幕 | 久久精品成年人免费看国产片 | 美女18禁永久免费观看网站| 国产精品丝袜一区二区| 婷婷色香五月综合激激情| 无码+剧情+动漫| 国产女人第一次做爰视频| 国产精品一区二区三区九一麻豆| 国产又色又爽无遮挡免费| 亚洲精品av网站在线观看| 日本五十肥熟交尾| 成人无码麻豆αV无码不卡| 日韩精品福利片毛片在在线看的| 亚洲欧美一区二区三区另| 蜜臀国产精品久久久久久| 熟女老阿8888AV| 一边吃奶一边舔p好爽视频观看| 日韩精品网站在线观看| 亚洲视频手机在线观看| 欧美乱码精品一区二区| 少妇特黄A一区二区三区| 国产成人免费av片久久| 国产呦交精品免费视频| 亚洲国产高清av网站| 国产jjizz一区二区三区老人| 亚洲桃色在线播放国产精品| 先锋啪啪A片中文字幕| 夜夜爽8888免费视频| 亚洲国产三级在线观看| 中文字幕亚洲欧美中文字幕| 国产高清精品福利私拍国产| 18+av在线免费| 精品区一区二区三区| 国产+高潮+在线观看| 久久婷婷综合激情亚洲狠狠| 国产无套白浆视频在线观看| 一区二区三区在线观看视频| 久久国内精品自在自线图片| 东京热一本大交乱HD| 亚洲欧美日本国产| 亚洲成在人线av品善网好看| 少妇久久久久久久| 人妻丰满熟妇av无码区不卡| 新婚少妇无套内谢国语播放| 日韩激情+一区二区三区+中文字幕| 啪啪网站免费观看无需下载| y1111111少妇影院| 一个人在线观看国产精品www | 欧美国产成人免费观看| 国内大量偷窥精品视频| 久久久久亚洲精品国产日韩精品| 国产稚嫩高中生呻吟激情在线视频| 亚洲天堂成视频在线观看| 白浆+高潮+喷水| 无码丰满熟妇一区二区| 强迫凌虐淫辱の牝奴在线观看| 扒开粉嫩的小缝喷白浆| 国产免费不卡av在线播放| 7777淫语有声小说| 色噜噜人妻丝袜av先锋影音先| 美女很骚的视频网站国产| 中文在线观看免费| 国产欧美日韩综合精品二区| 国产寡妇婬乱a毛片视频| 日本高清在线www3344| 国产在线观看禁18| 国产免费不卡的在线视频| 人妻双飞互换不戴套| 迅雷+无码+椎名| 热久久国产欧美一区二区精品| 亚洲啪啪aⅤ一区二区三区9色| av天堂东京热无码专区| 国产亚洲精品久久久久久大师| 无码av永久免费专区麻豆| 亚洲一区二区三区国产中文| 欧美高清69xxvideos18hd| 麻豆人妻换人妻好紧| 日韩一区二区av网站在线观看| 久久久噜噜噜久久中文字幕色伊伊 | 四虎精品寂寞少妇在线观看| 欧美成人一区二免费视频小说| 天堂√最新版中文在线地址| 欧美成人看片一区二区| 美女网站一区在线观看免费国产| 亚洲国产尤物在线观看视频| 国产日本久久久久久久久婷婷| 成人免费精品网站在线观看影片| 伊人久久精品大色欧美二区药| 麻豆国产成人av高清在线| 国产伦精品一品二品三品的更新时间| 久久人人爽人人爽人人片亞洲| 国产免费人成视频在线观看| 国产一区二区色婬影院| 欧美极品少妇xxxxⅹ免费视频| 熟妇激情内射com| 国产一级精品理论片在线| 亚洲精品久久久av无码专区| 一区二区免费欧美| 激情文学午夜视频在线观看| 免费网站在线观看人数在哪里直播| 成人亚洲a片v一区二区三区蜜月| 亚洲?V无码成人动漫无遮挡| 六十路の完熟丰满无码| 新无码毛片一区二区有码| 国产伦子伦对白在线播放观看| 五十路の完熟豊満| 动漫+有码+在线视频| 亚洲天堂2014| 日韩av不卡一区| 亚洲综合色区另类小说| 中文字幕第一区综合| 综合国产免费成人在线视频| 精品视频一起草在线播放| 亚洲视频手机在线观看| 亚洲综合天天夜夜久久| 欧美亚洲日韩在线在线影院| 中文字幕a片视频一区二区| 欧美三级在线播放| 日韩美女视频一区二区| 欧美在线高清视频| 另类图片+动漫+日韩| 999在线免费观看精品视频| 午夜福利黄色小视频| 国产高清乱理伦片中文小说| 国产精品主播一区二区三区| 国产一区日韩二区欧美三区| 亚洲精品久久酒店| 人人妻人人澡人人爽曰本| 欧美成人一区二免费视频| 96精品伊人久久久大香线蕉| 久久99男同女同国产观看| 人妻丰满熟妇av无码| 亚洲精品av中文字幕在线| 东京热无码中文字幕av专区| 欧美日韩一区二区三区aa| 日本五十肥熟交尾| 樱花在线视频免费观看电视剧网站| 2022亚洲无砖无线码| 国产成人精品免费视频| 级r片内射在线视频播放| ts人妖另类精品视频系列| 精品偷自拍另类在线观看| 中国国产野外1级毛片视频| 久久久久久臀欲欧美日韩| 中文文字幕中文字幕在线中文乱码| 99国产超薄肉色丝袜交足的后果| 18+在线免费观看| 国产成人精品一区二区在线观看 | 亚洲精品久久久久中文第一幕| 无遮挡啪啪摇乳动态图| 欧美精品亚洲日韩aⅴ| 精品国产乱码久久久久久口爆网站| 亚洲欧美自拍另类| 高潮+国产+白浆| 97成人做爰A片无遮挡直播 | 人人澡人人澡人人看添| 午夜成人片在线观看免费播放| 国产女人第一次做爰视频| 亚洲系列中文字幕| 深夜国产福利小视频在线观看| 激情午夜福利在线视频观看| 91一区二区国产精华液| 国精产品国语对白东北| 亚洲色18禁成人网站www| 欧美日韩中文字幕在线xxx| 伊人色综合视频一区二区三区 | 中文国产成人精品久久一区| 中文字幕日韩精品久久| 日韩av手机在线免费播放| 91看片淫黄大片一级在线观看| 500部大龄熟乱4K视频| 中文字字幕在线中文乱| 日本二区三区黄色视频网站| 2022亚洲无砖无线码| 毛多水多丰满女人A片| 亚洲中文字幕无码爆乳AV| 久久免费国产精品1| 成年日韩片av在线网站| 国产婷婷vvvv激情久| 国内自拍一二三四2021| 国产精品无打码在线播放| 人人爽人人爽少妇免费| 欧美日韩无线码视频在线播放| 内射老太太b里面| 88国产精品视频一区二区三区| 美女高潮穿丝袜久久国产精品| 免费啪视频在线观看| 日韩中文字幕在线观看一区二区| 成人av一区二区兰花在线播放| 亚洲精品国产精品国自产网站| 国产精品视频在视频| 尤物网站视频免费看| 亚洲高清无码视频| 午夜影院亚洲大码免费| 97久久精品人人做人人爽| 2020中文字字幕在线不卡| 精品+国产+高潮| 久久这里只有精品首页| 色拍自拍亚洲综合图区| 欧美日一区二区三区| 精品熟女少妇av免久久| 丁香五月激情综合亚洲| 日韩乱码人妻无码中文字幕久久| 亚洲欧美不卡人妻中文字幕| 少妇人人凹凸XX凹凸爽凹凸| 再深点灬舒服灬太大了快点91 | 美女视频一区二区在线观看| 中文在线观看免费高清电视剧 | 亚洲天堂岛av一区二区| 亚洲s久久久久一区二区| 久久久久久久无码高潮| 中文字幕av手机版| 中文字幕岳伦妇无码中出| 精品国产中文一区二区三区| 高清国产下药迷倒白嫩| 成全在线观看免费完整| 天天躁日日躁狠狠躁av中文| 亚洲乱码国产乱码精品精乡村 | 精品久久久久久久无码人妻热| 精品美女视频在线观看免费| 女人床上高潮淫语HD| 免费+国产+麻豆| 国产亚洲人成站在线播放国产99| 亚洲三区在线观看无套内射| 无码成人AAAAA毛片AI换脸| 理论片+亚洲+欧美| 日韩精品一区二区在线观看网址 | 久久久久久久久久韩国精品| 激情无码人妻又粗又大中国人| 国产毛片一区二区三区| 亚洲欧洲成人a∨在线观看| 亚洲欧美激情五月在线观看| 国产精品欧美精品日韩专区一乛方 | 亚洲免费精品视频| 亚洲国产精品久久久久秋霞蜜臀| 美女在线观看免费视频网站| 亚洲va韩国va欧美va| 四虎影视国产精品永久在线 | 亚洲视频一区高清在线观看| 亚洲乱码中文字幕| 伊人久久大香线蕉综合av| 国产精品视频_区二区三区| 黑人与中国少妇xxxx视频在线| 久久天天躁狠狠躁夜夜AV| 你懂的欧美一区二区三区| 国产传媒麻豆剧精品av国产 | 99久久精品无码一区二区免费 | 欧美乱码精品一区二区| 日本一区二区三区黄色片v| 国产精品欧美中文字幕在线观看| 亚洲欧洲成人精品av97| 国产成人精品人人| 亚洲人成色99999在线观看| 中国做爰国产精品视频| 中文字字幕永久在线观看| 仙踪林777777野大粗| 亚洲成a人蜜臀av在线播放| 国产精品8888| 黄色免费在线视频| 亚洲中文字幕日产无码成人片| 丝袜无码一区二区三区| 大胆欧美熟妇xxbbwwbw高潮了| 日韩av三四级在线观看| 精品人妻伦一二三久久18禁| 日本haaeX孰妇乱子高潮| 高清国产下药迷倒白嫩| 最近更新中文字幕2019视频 | 国产盼盼私拍福利视频99| 国产欧美精品一区| 亚洲精品免费视频| 色欲AV无码一区二区三区| 在线视频中文字幕一区二区三区| 亚洲已满18点击进入在线看片| 日韩av中文字幕国产精品| 成人+在线+网站| 亚洲日韩欧美在线无卡| 久久亚洲精品国产精品紫薇| 伦视频中文字幕亚洲天堂网| 国产精品99久久免费| 亚洲精品少妇影院| 婷婷色香五月综合激激情| 久一蜜臀av亚洲一区| 亚洲va久久噜噜噜久久| 欧美日韩精品一区二区视频| 亚洲精品视频在线观看网址网站 | 精品+国产+白浆| 亚洲va久久久噜噜噜狠狠久久| 国产欧美日韩精品一区二区蜜臀| 98在线视频噜噜噜国产| 国产在线精品拍揄自揄免费| 国产高清视频在线| 久久精品亚洲熟妇少妇任你躁| 亚洲第一成人在线| 国产免费不卡av在线播放| 日韩69永久免费视频| 国产精品18久久久首页| 国产sm重味一区二区三区| 一本丁香综合久久久久不卡网站 | 天海翼+无码+磁力| 亚洲桃色在线播放国产精品| 日本精品一卡二卡三卡四卡视| 中文字幕资源在线| 国产a视频精品免费观看| 成人一区二区三区久久精品嫩草 | 国产免费无遮挡吃奶视频| 欧美成人高清视频a在线看| 亚洲精品久久久久久中文| 久久久噜噜噜久久久精品| 九九精品在线观看| 精品久久久久久无码中文字幕漫画| 91九色在线视频| 国产精品青草久久福利不卡| 老牛影视AV牛牛影视av| 国内精品伊人久久久久影院麻豆| 欧美日韩亚洲视频一区二区三区 | 又粗又硬又黄的视频国产| 日韩成人中文字幕| 老司机成人精品视频在线观看| 91精品久久久久久综合乱菊| 巨乳熟妇一区二区三区| 国产无套普通话对白| 欧美久久国产精品| 亚洲第一成人av| 国产精品96久久久| 国产成人av+在线| 97视频在线观看免费| 久久久福利视频免费观看| 人妻+97视频在线观看| 美女视频一区二区在线观看| 免费网站观看www在线观看| 91久久香蕉国产日韩欧美9色| 99精品视频一区在线观看| 中文字幕+中文在线| 涩涩网站在线观看| 丰满少妇被猛烈进入试看| 美女视频网站在线观看污| www九色com| 国产精品麻豆入口29| 久久精品无码中文字幕| 夜夜国自一区+1080P| 自拍区小说区图片区亚洲| 中文字幕精品久久久乱码乱码| 日韩精品无码一区二区三区久久久| www.igao.comwww.yjt| 人妻免费久久久久久久了| 17c一.起草看片| 国产精品国产馆在线真实露脸| 按摩+无码+磁力链接| 欧洲无线码免费一区| 国产精品久久久久久久福利| 在线亚洲专区高清中文字幕| www.17c嫩嫩草色视频蜜桃| 美女动态视频久久久久久久久久 | 国产美女精品视频免费播放软件| 精品亚洲成熟女人www| 国产在线观看禁18| 国产午夜福利精品一区二区三区| 在线+免费+欧美| 国产免费av综合片在线观看| 国产女人高潮毛片| 人人妻人人爽人人澡人人| 久久久久无码精品亚洲日韩| 天天免費国产在线观看| 日韩午夜激情视频| 91精品在线视频观看| 粉嫩99精品99久久久久久桃色| 蜜桃二区免费网站| 337p日本欧洲噜噜噜噜| 日本欧美一级aaaaa毛片| 亚洲精品一区二区不卡| gogogo免费完整国语| KTV女技师啪啪无套内谢| 国产一区二区三区精品在线| 波多野结衣潮喷视频无码42| 亚洲欧洲日本在线| 国产乱子伦无套一区二区三区| 歪歪爽蜜臀av久久精品人人| 精品国产一区二区三区日日嗨| 九九99久久精品综合| 亚洲成aⅴ人在线视频| 午夜久久久久久久久| 人妻+综合+激情| 白嫩老师肉体videosd| 人妻av中文无码| 青草久久人人97超碰| 国产成人JVID在线播放| 国产精品久久av免费观看| 日韩中文字幕国产| 日韩v欧美v中文在线| 国语+人妻+磁力链接| 无码区a∨视频体验区30秒| 另类图片+动漫+日韩| 日韩视频一区在线| 97国产欧美人人爽人人做| 欧美中文字幕在线| 一卡二卡不卡免费视频观看| 亚洲欧美国产国产综合一区 | 国产+欧美+熟女| 韩国n号房视频+在线观看| 日本欧美成人精品在线观看| 极品av麻豆国产在线观看| 免费国产精品自偷自偷免费看| 97色伦综合在线欧美视频| 久久综合88中文字幕| 尹人久久久香蕉精品| 两人午夜免费观看www| 93国产精品久久久久久| 乱码一卡二卡新区永久入口| 99精品国产再热久久无毒不卡| 日韩1区3区4区第一页| 内射高中学生妹91在线| 国产不卡在线播放| 女人的天堂a国产在线观看| 亚洲永久精品ww47| 《公妇公侵波多野结衣》_| 久久婷婷五月综合色一区二区 | 婷婷涩嫩草鲁丝久久午夜精品| 国内精品伊人久久久久av一坑 | 国产乱码精品一区二区三| 中文字幕在线免费观看一区二区| 少妇爆乳无码专区| 国产免费不卡的在线视频| 在线观看视频中文字幕| 麻豆人妻换人妻好紧| 国产在线高清理伦片a| 亚洲图片欧美在线看| 中文字幕乱码视频32| 国产精一品亚洲二区在线播放| 日本69式三人交| 国产三级一区二区三区视频播放| 亚洲精品制服丝袜四区| 精品视频一区二区三区| 成人年人免费看xxxxxxx| 18+免费视频网站| 国产伦精品一区二区三区精品视频| 日韩精品人妻系列无码专区 | 国产欧美成人xxx视频| 在线视频中文字幕一区二区三区| 亚洲精品欧美黄片在线免费看| 无码+会员+动漫| 国产精品1000夫妇激情啪| 特级西西444www大胆免费看| 日韩+成人+自拍| 2021年国产精品自线在拍| 高清有码国产一区二区| 精品一区二区三区四区| 国产精品熟女高潮精品| 精品视频在线观看一区二区| 国产激情小视频在线观看的| v8888AV偷拍夫妻| 日本地区不卡高清更新二区| 免费视频在线观看网站| 小蜜被两老头吸奶头在线观看| 久久91综合国产91久久精品| 丝袜+欧美+国产| 国产白丝jk捆绑束缚调教视频| 99久久精品免费国产亚洲| 国产精品欧美一区二区三区不卡 | 婷婷精品久久久久久久久久不卡| 韩国美女一区二区在线观看视频| 日韩国产一区二区三区| awww在线天堂bd资源在线| 精品一区精品二区| 欧美亚洲国产精品第一页| 白浆+高潮+免费| 播五月开心婷婷欧美综合| 在线观看视频免费入口| 狠狠色噜噜狼狼狼色综合久| 欧美人与动牲交xxxxbbbb| 强迫凌虐淫辱の牝奴在线观看| 日韩精品在线第一页| 色八区人妻在线视频免费| 日本理论片免费观看在线视频| 伊人久久大香线蕉av超碰演员| 亚洲欧美日韩中文加勒比| 日韩国产精品一区二区| 热99久久精品这里都是精品| 日韩在线观看视频精品资源 | 欧美乱码精品一区二区| 日韩中文字幕免费| 亚洲成AV人片一区二区密柚| 国产91av视频在线观看| 天堂www天堂在线资源网| 国产伦精品一品二品三品的更新时间| 手机看片福利永久国产香蕉| 乖女早晨含精吞精h正常吗视频| 国产超级a视频免费观看| 成人无码麻豆αV无码不卡| 大胆欧美高清videosedexohd| 国产精品久久久天天影视| 苍老师在线观看免费播放电视剧中文 | 日韩精品成人免费观看视频 | 在线视频+亚洲+人气| 欧美狠狠入鲁的视频| 欧美成人精品三级在线观看播放 | 国产三级精品三级在线专区1| 国产精品国产精品久久久久| 正在播放+日韩+无码| 亚洲美女视频一区二区三区| 欧美成人免费一级| 四虎影视国产精品| 国产粉嫩呻吟一区二区三区| 久久精品国产精品国产精品黄| 国产亚洲精品香蕉网九色| 在线观看视频中文字幕| 人妻精品一区二区三区| 美女搡BBB又爽又猛又黄www| 樱花私人影院的电视剧特点| 78色淫网站女女免费| 国色天香成人一区二区| 国产成人亚洲精品青草| 亚洲色图日韩伦理国产精品| 两个人日本www免费版| 人与野鲁毛片在线视频| 国产精品福利网红主播| 亚洲综合无码一区二区三区不卡 | 欧美精品亚洲日韩aⅴ| 无码专区HEYZO蜜臂AⅤ| 国产后进白嫩翘臀在线播放| 成人精品综合免费视频| 白丝爆浆18禁一区二区三区| 欧美精品黄片一区二区三区| 日本熟妇色XXXXX日本免费看| 国产精品最新乱视频二区| 黄色一区二区三区视频| 亚洲国产成人av| 日本真人做爰a片| 97久久超碰精品视觉盛宴| 青青草免费在线视频| 欧美超碰在线观看| 国产一区二区三区在线看麻豆| 国产70老熟女重口小伙子| 99久久精品久久久久久动态片| 久久婷婷五月综合色一区二区| 亚洲日韩久久综合中文字幕 | 白浆+高潮+蜜桃| 欧美日韩亚洲中文字幕三| 亚洲欧洲国产日韩精彩视频 | 2021精品国产自在现线看| 亚洲AⅤ无码国精品中文字慕| 色愁久久久人愁久人生无悔意思相近| 日韩高清在线亚洲专区小说| 国产真实乱偷精品视频| 国产精品久久网站| 国产精品毛片一区二区在线看舒淇 | 青娱乐精品视频在线观看| 国产成在线观看免费视频密| 欧美成人精品一级乱黄| 床震高潮在线观看无遮挡 | 亚洲综合色区另类小说| 美里麻衣无码番号| 国产精品鲁丝av一区二区| 人人妻人人澡人人爽欧美一区双 | 无码av中文一二三区| 91亚洲欧美日韩国产综合| 亚洲国产精品成人综合色区| 一级二级三级亚洲欧美大片| 丰满大爆乳波霸奶| 99热热久久这里只有精品| 成人春色www在线| 中文字幕aⅴ在线视频| 欧美日韩高清在线| 国产欧美一区二区三区午夜精品| 国产精品久久久久久三级| 久久中文字幕av一区二区不卡| 亚洲国产精品一区第二页| 欧美另类与牲交zozozo| 一本大道HEYZO乱码专区在破解| 亚洲中国精品黄色av一区| 亚洲av乱码国产精品色午麻豆| 亚洲欧洲国产成人综合在线观看| 中文字幕精品久久久久人妻| 欧美人牲交a欧美精区日韩| 精品免费产品日亚韩二区 | 2021年国产精品午夜福利在线观看 | 色婷婷婷在线网站| 国产欧美日韩视频在线观看| 日本一本高清中文字幕视频| 亚洲国产精品成人久久久久| 少妇久久久久久被弄高潮| 国产女人18毛片水真多成人如厕| 一边摸一边抽搐一进一出口述| 他用舌头给我高潮喷水在线| 99久久免费精品国产免费… | 成人午夜高潮a∨猛片| 26uuu精品一区二区| 国产剧情国产精品一区| 男女乱淫免费视频一区二区三区| www.四虎色情.com| 韩漫免费漫画在线观看方法 | 亚洲国产精品久久久毛片| 国产精品成人免费视频一区二区| 99久久人妻精品免费二区| 麻豆专媒体一区二区| 日韩精品+久久久+免费观看 | 琪琪女色窝窝777777| 亚洲国产成人福利在线视频播放| 亚洲精品国产主播在线三区| 国产极品久久7777777| 鲁大师影视在线观看高清免费| 国产av天堂一区二区三区粉嫩| 黑外教弄人妻波多野结衣| 中文字幕国产专区欧美激情| 亚洲美女视频网站| 国产一三四2021不卡| 国产免费观看高清电视剧在线观看 | 黄色网页在线播放| 亚洲精品在线兔费观看视频| 亚洲人视频在线观看视频在线| 2021国产精品午夜久久| 国产女人高潮毛片| 高清国产一区二区三区四区五区| 婷婷亚洲久悠悠色悠在线播放| 精品国产露脸久久av| 手机看片福利永久国产香蕉| 日本高清在线一区二区三区| 国产伦精品一区二区三区妓女原神| 一区精品在线观看| 欧美亚洲国产片在线播放| 国产免费拔擦拔擦8x高清在线人| 成人含羞草一区二区三区| 久久久久青草线蕉亚洲麻豆| 四虎影院在线观看免费| 亚洲国产尤物在线观看视频| 精品久久国产字幕高潮| 亚洲国产精品一区二区美利坚| 免费精品成人在线永久观看| 毛片黄色美女视频观看| 少妇精品偷拍高潮少妇小说| 亚洲成人视频在线观看| 无码中字视频网址大全| 精品视频无码一区二区三区| 国产无遮挡又黄又爽在线视频| 亚洲人妻在线播放| 亚洲男女内射在线播放| www.香蕉视频| 国产91精品一区二区麻豆观看| 河南富婆淫语露脸对白视频| 亚洲欧美国产综被窝蜜臀| 天堂а√中文最新版在线| 婷婷五月深深久久精品| 日韩欧美中文字幕一区二区| 狠狠综合久久av一区二区蜜桃| 亚洲精品入口一区二区乱麻豆精品| 嫩BBB槡BBBB槡BBBB18| 天堂网www最新版官网| 免费福利视频网站一区二区三区| 6969成人亚洲婷婷| 精品国产精品一区二区夜夜嗨| 亚洲+激情+专区| 免费午夜无码18禁无码影院| 人妻被按摩到潮喷中文字幕| 一区二区三区偷拍| 中文字幕+国产精品| 亚洲高清成人aⅴ片| 日韩激情+一区二区三区+中文字幕| 久久视频这里有久久精品视频11| 亚洲国产欧美人成| 26uuu久久噜噜噜噜| 手机在线看片1024| 成人免费无码大片a毛片18| 国产精品igao视频网| 日本人妻丰满熟妇www色| 中文字幕+乱码+在线观看| 国产精品原创巨作av女教师| 岛国精品一区免费视频在线观看| 东京热大輪姦多人1311 | 色婷婷噜噜久久国产精品12p| 伊人久久大香线蕉午夜av| 女女女女女裸体处开bbb| 热99国产精品久久久久久久| 熟妇人妻无乱码中文字幕| 丁香婷婷综合激情五月色| 国产精品视频男人的天堂| 国产精品毛片在线完整版SAB| 亚洲永久网址在线观看| 国产精品96久久久久久 | 韩国主播av福利一区二区 | jav+中文字幕| 影音先锋+人妻斩| av网站在线观看不卡| 国产av深夜精品福利专区| 囯产综合久亚州中文字幕欧| 亚洲国产一区二区在线| 国产高清在线一区| 亚洲a∨精品一区二区三区| 久久这里只有是精品23| 大地资源二中文第二页在线| 国产在线看老王影院入口2021| 免费+网站+国产| 三年片在线观看免费观看大全+下载| 成人综合另类国产色视频| 夜夜嗨av一区二区三区 | 中文娱乐网2222官网入口| 国产熟妇高潮呻吟喷水| 亚洲天堂成视频在线观看| japan丰满人妻videoshd高清 | 国产免费一级淫片a级中文| 色狠狠久久aa北条麻妃| 人妻+种子+磁力链接| 中文字幕乱码熟女人妻水蜜桃| 少妇精品揄拍高潮少妇| 91精品国产门事件美女写真集| 狠狠色噜噜狠狠狠777米奇小说| 久久亚洲精品成人无码网站| 扒开女人内裤猛进猛出流出白液| 亚洲国产精品一区第二页| 黄色片网站在线观看| 欧美一片毛国产在线视频| 日韩黄a三级三级三级看三级少妇| 免费无码一区二区三区蜜桃| av天堂中av世界中文在线播放| 久久久久久经典精品欧美激情 | 亚洲国产日韩成人a在线欧美| 篠田优人妻与黑人BD在线| 国产三级在线三级久操欧美| 亚洲高清码在线精品av| 特黄aaa片在线观看| 理论片+亚洲+欧美| 亚洲国产精品久久99人人更爽| 色愁久久久人愁久人生无悔意思相近 | 《玉女心经之观音坐莲》| 国产亚洲欧美视频在线观看 | 亚洲精品视频三区| 亚洲欧美激情四射在线日| 66国产在线一区二区三区| 黑人精品XXX一区一二区| 91久久国产综合精品女同国语 | 国产+综合+免费| 国产成人免费午夜不卡视频| 伊人久久精品亚洲午夜| 国产午夜精品久久久久免费视| 日韩在线一区高清在线| 老汉tv永久视频福利在线观看 | 无码人妻一区二区三区筱田优| 18+在线视频网站| 亚洲综合激情国产一区| 711公侵犯美丽人妻| 【快穿】淫交任务(高h| 精品无码人妻视频一区视频二区| 国产精品又爽又粗又长又硬| 色久综合网精品一区二区| 久久99热只有精品首页| 久久97久久97精品免视看秋霞| 亚洲丝袜制服在线观看视频| 国产美女久久久久久久久久久久| 国产+高潮+精品| 四虎影视在线观看国产精品| 91av免费在线观看| 99久久一区二区| 夜夜躁狠狠躁日日躁2022| 欧美成人一区二免费视频小说| 别揉我奶头~嗯~啊~一区二区三区 在线天堂中文www视软件 | 日韩精品人妻无码久久影院| 成在线人免费视频播放| 国产剧情中文字幕一区二区| 少妇av一区二区三区| 国产成人久久精品区一区二区| 中文字幕+亚洲专区| 熟妇乱子伦海角社区| 91天天综合免费看国产| 精品亚洲永久免费aaaa| 中文字幕+乱码+中| 看全色黄大色黄大片爽一次| 亚洲综合Av一区二区三区| 美女十八禁在线无遮挡免费看| 91精品国产高清一区二区三区| 婷婷激情五月天综合丁香社区| 久久www免费人成看片高清| 亚洲欧美精品自拍视频视频| 中文字幕无线码免费人妻| 东北夫妻露脸69口爆视频| 成人+欧美+日本| 草色噜噜噜av在线观看| 欧美+国产+日韩在线| 国产成人精品午夜福利软件| 青青草国产免费国产是公开 | 亚洲a片成人无码久久精品色欲| 精选一区二区三区免费在线观看| 亚洲欧美在线中文字幕不卡| 国产在线精品一区二区不卡| 少妇嫩搡BBBB搡BBBB| 久久九九久精品国产| 久久精品国产自清天天线| 精品久久久久久国产免费| 中文字幕一区二区三区乱码在线| 美女免费精品毛片在线播放| 中文字幕视频在线欧美一区| 日日摸日日碰夜夜爽无| 天天揉久久久久亚洲精品| 国产女子爆操高潮免费视频| 日本一道综合久久aⅴ久久| 少妇太爽了在线观看视频| 日韩中文字幕影院| 久久久久久国产精品美女| 中文字幕一区二区三区乱码图片| 狠狠色狠狠人格综合| 草色噜噜噜av在线观看| 国内精品久久久久久网站| 亚洲18禁私人影院| 亚洲欧洲成人在线| 亚洲欧美另类成人综合图片| 久久天天躁狠狠躁夜夜2020一 | 成人av一区二区兰花在线播放| 国内乱子对白免费在限| 500部大龄熟乱4K视频| 内射囯产旡码丰满少妇| 少妇爆乳无码专区| 伊人色综合久久天天五月婷| 久久99精品久久久久婷综合| 色噜噜狠狠狠狠色综合久不| 亚洲欧美日韩精品国产91| 91贵在真实少妇SPA推油按摩| 2019日韩中文字幕| 97免费公开视频| 无码aⅴ精品一区二区三区浪潮 | 伊人久久大香线蕉午夜av| 99热热久久这里只有精品| 丰满人妻熟妇乱又伦精品劲 | 日韩中文字幕视频| 一本一道久久a久久精品| 免费国产精品一区二区三| 国产原创在线观看福利精品| 国产白丝护士av在线网站| 无码无套少妇毛多69xxx| 亚洲高清www色好看美女| 大胆欧美熟妇xxbbwwbw高潮了 | 国产91精品久久久久91痣美人| 手机+在线+精品| 重囗味sM群虐老女人| 免费+精品+国产| 已婚少妇露脸日出白浆| 伊人狠狠色丁香婷婷综合| 久久精品国产亚洲av久野外| 精品一区二区三区三区| 成人亚洲xxx在线观看| 久久久精品视频网站| 精品美女www爽爽爽在线| 暴躁妹妹高清免费观看电视剧视频| av网站高清在线免费观看| 超污视频在线观看| .17c嫩嫩草色视频| 深夜男女福利18免费软件| 国产在线观看www污污污| 国产91高潮流白浆在线麻豆 | 久久俺也去丁香综合色| 亚洲+综合久久+成人av| 老司机在线精品视频网站| 国产精品jk白丝蜜臀av小说| 国产乱妇乱子在线播放视频| 亚洲精品国产精品乱码在线观看| yy6080亚洲精品一区| 国产+日韩+欧美成人| 精品久久亚洲中文字幕| 亚洲va欧洲va国产va不卡| www国产精品视频看看| 国产成人av综合久久视色| 99久久久久久国产精品| 色视频免费在线观看| 亚洲成人精品视频| 亚洲精品一二三区| 无码av无码天堂资源网影音先锋| 久久精品国产亚洲av桃花av| 欧美一区二区三区四| 国产超级a视频免费观看| 国产成人av网站网址| 出轨人妻毛片一级| 国产97在线观看| 国产午夜亚洲精品不卡在线观看| 黄页+国产+在线观看| 亚洲综合国产精品一区 | 午夜福利精品kkk在线| 国产欧美综合在线观看第十页| 日韩69永久免费视频| 在线日韩日本国产亚洲| AV剧情麻豆映画国产在线观看| 亚洲中国国产av| 日本人妻免费一区二区三区| 美女诱惑一区二区| 亚洲+欧洲+久久av| 2018年亚洲欧美在线视频| 全免费a级毛片免费看视频| 天天躁日日躁狠狠躁超碰97| 天堂躁躁人人躁婷婷视频ⅴ| 无码+会员+动漫| 在线国内精品自线视频| 巨爆乳无码视频二区涩漫| 安徽丰满少妇BBBBBB| 国产精品美女WWW爽爽爽视频| .17c嫩嫩草色视频| 国产自偷亚洲精品页65页| 国产亚州精品女人久久久久久| 久久精品国产一级特黄片| 男女久久久国产一区二区三区| 88国产精品视频一区二区三区| 国产av综合第1页| 人妻丰满熟av无码区HD| 91看片淫黄大片91桃色| 欧美日韩在线观看视频| 日韩不卡高清视频| 中文字幕亚洲第14| 99久久久久免费精品国产| 中文字幕亚洲无线码| 免费啪视频观在线视频在线| 亚洲欧美另类自拍小说网| 肉丝美足丝袜一区二区三区四| 免费午夜福利不卡片在线播放| 动漫无遮挡羞视频在线观看| 出差+协和+中文字幕| 视频一区视频二区制服丝袜 | 亚洲+国产+图片| 亚洲成人国产精品| 日韩精品久久久久久久的张开腿让 | 日本+国产+在线观看| 国产又粗又硬又爽又猛又黄视频| 中文国产日韩精品av片| 人妻在线日韩免费视频| 日韩欧美一区视频| 日本一区二区三区四区在线| 少妇嫩搡BBBB搡BBBB| 成人a大片在线观看| 国产精自产拍久久久久久蜜| 亚洲中文字幕阿阿视频在线| 亚洲欧美韩国综合色| 亚洲第一极品精品无码视频| 中文字幕日韩一区二区不卡 | 尤物97国产精品久久精品国产| 国产视频资源在线观看| 中文字幕人妻丝袜成熟九色| 亚洲Av永久无码天堂影院黑人| 国产高清视频在线| 久久久久亚洲精品| 久久人妻这里有精品视频| 最新69国产成人精品视频免费| 久久久久国产精品人妻照片| 国产美女91呻吟求| 日韩av免费观看一区二区三区| 麻豆产精品一二三产区区| 免费+精品+国产| 国产av一区二区二区三区| 中文字幕在线观看网站| 中文字幕欧美精品一区二区三区| 羞羞影院午夜男女爽爽免费| 无遮挡又黄又爽的免费视频| 国产色99精品9i| 亚洲+视频+免费| 亚洲日本乱码一区二区产线一∨| 91九色在线视频| 欧美日韩中文国产| 国产免费一级淫片a级中文 | 亚洲国产精品一区二区美利坚| 免费在线观看网址入口| 欧美超碰精品中文字幕在线| 2020中文字字幕在线不卡| 欧美日本韩国区一区二视频| 在线观看国产一区二区av| 久久精品成人欧美大片| 中文字幕一区二区三区5566| 伊人色综合久久天天五月婷| 91贵在真实少妇SPA推油按摩| 另类天堂网不卡另类系列| 狠狠色噜噜狠狠狠狠777米奇小说| 亚洲欧美国产日本一区二区 | 日韩精品中文在线一区二区| 超薄肉色丝袜一二三四| 久久99国产精品久久99软件| 国产精品视频一区二区三区不看| 一边吃奶一边添p好爽故事| 亚洲欧洲日本在线| 2021国产精品久久久久k8| 亚洲精品无码久久久久不卡| 精品无人乱码一区二区三区的特点| 亚洲国产中文字幕2020| 级r片内射在线视频播放| 免费黄色网址在线观看| 日韩欧美高清在线观看| 日韩欧美一区二区三| 欧美色欧美亚洲日韩在线播放| 国产+欧美+日本在线观看| 可以免费看日本黄色的网站| 夜夜爽8888免费视频| 在线观看一区二区三区少妇| 国产乱人伦精品一区二区在线观看| 人体极品粉鮑欣赏91| 国产欧美色一区二区三区| 亚洲综合欧美日韩| 免费无码毛片一区二三区| 精品无人国产偷自产在线| 国内精品在线播放| 国产+精品+空姐| 色偷偷人人澡人人爽人人模麻豆| 嫩草嫩草嫩草久久水拉丝了| 国产色在线观看免费视频| 8090成人午夜精品无码| 国产中文字二暮区| 国产精品久久久久久久免费绯色 | 国产女人18毛片水真多1| 日韩欧美中文字幕在线播放| 天堂а√中文最新版地址在线| 一卡二卡不卡免费视频观看 | 丰满大乳奶做爰ⅩXX视频| 精品成人一区二区三区四区| 国产一区精品va在线播放| 精品久久久久久亚洲综合网站| 欧美日韩免费观看一区=区三区| 乱码精品国产成人观看免费| 国产山东熟女48嗷嗷叫| 国产精品视频色尤物yw| 日日摸日日碰人妻无码| 免费av不卡在线观看| 区二区三区玖玖玖| 久久一区二区三区四区| 亚洲一区二区三区欧美| 国产精品一区二区久久乐夜夜嗨| 人人妻人人澡人人爽人人dvd| 久久久久久人妻中文字幕| 李宗瑞91在线正在播放| 国产精品日本一区二区不卡视频 | 久久精品视频久久| 久久国产免费福利永久| 久久99久久精品播放免费| 亚洲精品无码久久久久不卡网址| 久久精品99久久香蕉国产| 嗯高阿宾福利视频| 成人国产精品免费视频国| 国产欧美日韩视频一区二区三区| 国产精品一国产精品一k频道| 一本大道久久a久久精品综合1 | 91丨九色丨尤物| 无码综合天天久久综合网| 久久精品国产99国产| 手机中文字幕在线免费视频 | 国产+喷水+高潮| 精品久久久久久亚洲中文字幕| 国产免费一级淫片a级中文 | 国产成人午夜福利在线观看| 鲁大师日韩MV在线观看| 精品无码av一区二区三区不卡| 欧美视频在线观看免费www| 免费+国产+ktv| 欧美成人高清视频a在线看| 国产精品久久久久久亚洲a| 午夜理论欧美理论片| 亚洲国产av导航第一福利网| 亚洲不卡av一区二区三区| aaa少妇高潮大片免费看| 欧美人成在线视频| 在办公室被c到呻吟的动态图| 中国做爰国产精品视频| 亚洲精品国精品久久99热一| 色一情一乱一乱一区免费网站| 久蜜av色av熟女一区| 91精品国产麻豆久久久久久| 亚洲国内精品自在线影院牛牛| 亚洲日韩久热中文字幕| 久久91综合国产91久久精品| 日本欧美成人精品在线观看| 黄页网站免费视频大全9| 中文字幕av在线播放| 三级网站免费播放| 国产精品一区二区色综合| v8888AV偷拍夫妻| 亚洲欧洲精品专线| 亚洲а∨天堂久久精品喷水| 手机看片福利永久国产香蕉| 国产精品久久久av免费不卡| 免费看日产一区二区三区| 五十路完熟豊満交尾| 亚洲国产精品一区二区美利坚| 精工厂777免费观看电视剧| 玩弄少妇高潮喷水在线观看| 黄色一级大片在线免费看产| 免费网站永久免费入口| 久久精品国产亚洲精品166m| 亚洲精品少妇影院| 亚洲综合五月天婷婷丁香| 日韩欧美视频一区二区三区| 欧美熟妇丰满xxxxx裸体艺术| 日韩永久在线观看免费视频| bt天堂在线bt网| 西西妺妺窝窝777777777| 日韩精品欧美国产精品亚| 精品国产乱码久久久久| 99久久免费精品| 98在线视频噜噜噜国产| 亚洲国产精品婷婷| 色偷偷偷久久伊人大杳蕉| 久久伊人色av天堂九九| 亚洲处破女av一区二区中文 | 欧美激情一区二区三区四区| 可以看国产精品视频的网站| 国产精品久久久久久久久白女| 亚洲成AV人片一区二区密柚| 熟妇精品一区二区三区四区| 国产av亚洲第一女人av| 亚洲噜噜狠狠网址蜜桃av9 | 久久精品欧美一区二区| 中文字幕网视频一区在线观看| 日本高清在线不卡一区二区| 老熟妇乱子交视频一区| 亚洲精品国精品久久99热一| 人妻无码免费一区二区三区| 黑人一区二区三区| 综合图区亚洲欧美另类图片| 国产精品久久久久久久密月| 日日噜噜夜夜狠狠久久av小说 | 日韩一区免费视频| 色偷偷人人澡人人爽人人模| 美女成人亚洲黄色福利视频| 国产精品剧情在线中文字幕| B老骚B老熟B老太中国老骚B| 国产无套普通话对白| 亚洲欧美激情四射在线日| 国产欧美日韩高清在线不卡| 91精品国产一区二区三密臀 | 国产在线精品一区二区不卡| 免费的污污污网站在线观看| 国产日韩欧美91| 亚洲AV欲女久久天天躁| 黄色免费网站在线| 日韩免费在线播放一级黄片| 美女诱惑一区二区| 欧美热久久这里只有精品| 色阁精品香蕉一区二区| 精品国产精品一区二区夜夜嗨| 日韩Aⅴ黄日韩a影片| 99久久婷婷国产综合精品| 久久久亚洲av男人的天堂| 又大又黄又粗高潮免费| 西西4444www无码国模吧| 亚婷婷洲av久久蜜臀小说| 丰滿老熟婦HD六十| 国产边打电话边做对白刺激 | 国产+闺蜜+磁力链接| 下岗美妇的肉唇1一7章视频| 亚洲欧洲免费黄色视频| 日韩欧美一级片一区二区| 日韩三级伦理片色呦呦中文字幕| 成人免费毛片东京热| 久久受www免费人成| 真人床震高潮全部视频免费| av不卡国产在线观看| 18+在线免费观看| 亚洲免费人成网站在线观看| 国产又爽又黄又粗又硬视频| 91最新视频在线观看网址| 青草伊人久久综在合线亚洲观看 | 国产真实伦在线观看视频| 国产又粗又猛又黄又湿又爽视频 | 免费+精品+视频| 四虎视频在线精品免费网址| 亚洲一区二区精彩视频在线观看| 综合成人欧美网日韩青椒网| 欧美亚洲国产日韩一区二区| 中文字幕亚洲综合久久青草| 《朋友的妈妈2》中字头歌词华丽的外出 | 少妇精品综合无码| 日韩中文在线字幕| 免费+高潮+国产| 欧美日韩大香蕉岛国在线视频| 亚洲av乱码国产精品色午麻豆| 日本视频在线免费| 一本大道苍井空波多野结衣| 欧美人成在线视频| 经典三级头第一页免费AV| 日本三级带日本三级带黄| 中文乱码字幕视频观看网站免费| 国产精品99一区二区三区| 国产精品高清尿小便嘘嘘主演| 农村女人毛片精品久久久| 国产精品久久国产| 国产91麻豆一区二区在线| 国产精品午夜成人免费观看| 欧美乱码精品一区二区| 福利视频中文字幕一区二区| 韩国精品久久久久久无码| 黑外教弄人妻波多野结衣| 国产无人区码一码二码三mba| 色偷偷人人澡人人爽人人模| 亚洲国产精品av在线播放| 亚洲精品久久久久久久久毛片直播| 亚洲国产视频在线观看| 久久只有精品视频国产最新地址 | 翘臀后进少妇大白嫩屁股视频 | 乱色国内精品视频在线| 亚洲美女免费视频福利试看| 国产av综合第1页| 国产亚洲人成网站在线观看| 国产免费拔擦拔擦8x高清在线人| 国产麻豆91欧美一区二区| 国产少女免费观看电视剧字幕大全 | 国产+刺激+高潮| 国产精品美女久久久久av丝袜| 91精品国产人妻国产毛片在线 | 视频二区制服丝袜人妻欧美| 蜜桃臀久久久蜜桃臀久久久蜜桃臀| 少妇久久久久久久| 成人做爰a片免费看网站找不到了| 制服丝袜+国产精品+中文字幕 | 一区二区三区蜜桃| 久久人妻少妇嫩草av| 国产老女人乱婬免费| 国产成人主播在线视频看看| 国产精品久久久久一区二区| 国产这里只有精品| 91淫语熟女骚话连篇| 91亚洲高清视频在线观看| 2020久久香蕉国产线看观看| 秋霞无码久久一区二区| 国产女人第一次做爰视频| 日本一道综合久久aⅴ久久| 久久久精品国产亚洲成人满18免费网站 | 一级黄片亚洲一区二区三区| 九九热线视频精品99| 午夜成人精品福利网站在线观看| 色婷婷亚洲婷婷7月| 国产一级特黄毛片在线毛片| 日本+国产+在线观看| 欧美成人午夜一卡二卡在线视频| 欧美v国产在线一区二区三区| 无遮挡国产高潮视频免费观看| 免费在线观看不卡av| 窝窝影院免费观看高清电视剧| 午夜精品一区二区不卡二卡| 久久无码无码久久综合综合| 久久中文字幕av一区二区不卡| 久久精品欧美一区二区| 99国产精品污污污网站免费看| 亚洲国产综合一区二区精品| 八戒八戒在线www视频中文| 国产亚洲精品久久久999| 久草香蕉在线视频国产乱码精品一区二区三上| 欧美激情videos| 国产70老熟女重口小伙子| 窝窝看看国产精品| 51妺妺嘿嘿午夜成人A片| 欧美综合婷婷欧美综合五月| 无码专区aaaaaa免费视频| 日本在线视频www色| 亚洲人交乣女bbw| 精精国产xxxx视频在线观看| 尹人久久久香蕉精品| 十八岁成年免费观看电视连续剧法国| 真实乱子伦厨房A片| 国产黑丝在线视频| a毛片终身免费观看网站| 亚洲成a人v在线蜜臀| 国产日产欧产精品精品ai| www91免费视频| 久久久噜噜噜久久久午夜| 亚洲国产精品久久久久久久秋霞| 歪歪爽蜜臀av久久精品人人| 一区二区三区国产在在线播放| 国产在线观看免费高清电视剧大全| 国产69精品久久久久久久久久| 国产精品日本一区二区不卡视频| 在线看片免费人成视频久网| 99久久精品一区二区| gogogo高清在线完整免费观看| 亚洲ⅴa欧美ⅴa人人爽久| 免费+高潮+白丝| 麻花传剧原创mv在线看完整版高清| 男人天堂亚洲国产都在搜| 偷柏自拍亚洲综合在线| 成年人视频免费在线观看| 白丝在线看片av| 色愁久久久人愁久人生无悔意思相近| 欧美又粗又长又色又猛视频| 国内精品美女a∨在线播放| 色黄网站aaaaaa级毛片| 超碰cao12国产在线观看| 女人被狂躁到高潮喷水| 亚洲国产中文字幕无线乱码| 日本a视频在线观看| 波多野结衣绝顶高潮喷水| 国产熟女毛多水大高潮| 国产一区二区三区成人欧美日韩在线观看 | 欧美精品在线观看第一页| 欧美黑人做爰爽爽爽| 久久国产V一级毛多内射| 国产欧美日韩欧美一区二区| 国产伦精品一区二区三区综合网| www.香蕉.com| 国产精品va在线播放我和闺蜜| 欧美丰满熟妇乱xxxxx视频| 日韩av不卡一区| 亚洲欧美中文日韩v在线观看| 熟妇槡BBBB槡BBBB| 久久国产午夜精品理论片| 精品亚洲国产成人av| 在线观看国产成人尤物av天堂| 亚洲国产精品久久久久爰| 国产乱子伦无套一区二区三区 | 97无码精品综合| 日韩人妻无码一区二区三区综合| 神马午夜精品95| 中文天堂最新版资源www| 日本毛片高清免费视频| 日韩精品亚洲人成在线观看| 国内精品久久久久久影院| 国产精品久久久久久久免费大片| 四川少妇BBB搡BBB嗓视频| 国产高清免费av| 超高清欧美videossexopor| 91久久久久久国内免费视频 | 亚洲一卡二卡三卡四卡在线看| 50路の垂乳な肉体| 久久精品国产自清天天线| 午夜免费无码福利视频| 高潮+白浆+在线观看| 国产99久久久久久免费看农村| 久久精品国产久精国产思思!| 欧美日韩国产高清一区二区三| 国产欧美日韩一区二区三区在线 | 老太太老b乱子伦| 天堂av国产夫妇精品自在线| 偷偷要色偷偷中文无码| 国产精品高潮呻吟久久av免费动漫 | 国产区又黄又硬高潮的视频| 国产精品美女久久久久av爽李琼| 国产女爽123视频.cno| 69大片视频免费观看视频| 久久人国产精品99久久久| 国产精品欧美久久久久久日本一道| 日韩欧美中文字幕在线观看免费 | 999国产精品视频| 国产+日韩+欧美成人| 一本色道婷婷久久欧美| 最近高清日本免费| 国精品午夜福利视频不卡| ts人妖另类精品视频系列| 最新国产成人av网站网址麻豆| 麻豆免费在线观看视频| 国产精品一av一免费爽爽| 免费的国产成人av网站装睡的| 卧室大战欧美肉丝丝袜| 国产亚洲精品福利视频在线观看| 国产+日韩+喷水| 精品少妇一区二区三区四区五区| 免费+精品+在线观看| 亚洲精品久久久久午夜福禁果tⅴ 国产精品青草综合久久久久99 | 中文字幕久热精品视频在线| 日韩av资源在线| 久久精品成人欧美大片| 777米奇色888狠狠俺去啦 | 成人一区二区三区国产精品| 伊人色综合久久天天小片| 日韩免费在线播放一级黄片| 日韩美女免费毛片一区二区| 四个人妻互换不戴套| 久久精品欧美亚洲一区二区三区| 夜夜躁狠狠躁2021| 国产欧美日韩另类精彩视频| 牛牛在线免费视频| 国产少女免费观看电视剧字幕大全下 | 中文字幕老妇昭和肉欲| 2020亚洲欧美国产日韩| 亚洲第一美女精品久久久久| 熟女少妇精品视频免费观看| 88国产精品视频一区二区三区| 中文在线观看免费高清电视剧| 欧美黑人一区二区| 肉欲+中文字幕+迅雷| 老色鬼久久亚洲av综合1| 97中文字幕在线观看| 国产+免费+白浆| 亚洲欧美日本在线| 欧美大片一区二区三区视频| 不卡+一区二区视频+日本| 99热在线精品免费全部my| 国产成人午夜精华液| 亚洲高清www色好看美女| 永久免费看成人AV的动态图| 精品自拍亚洲一区在线| 精品1区2区3区4区产品| 久久99国产综合精品| 国产精品成人精品久久久| 天堂躁躁人人躁婷婷视频ⅴ| 国产女人爽的流水毛片| 精品无人区麻豆乱码1区2区| 嫩草影院在线观看高清完整版| 牛牛在线免费视频 | 妺妺窝人体色WWW聚色窝孕妇| 无码人妻aⅴ一区二区三区玉蒲团 天堂中文在线8最新版地址 | 日韩av免费在线播放| 国产精品伦视频看免费三| 足疗店熟女一88AV| 精品麻豆AV影院| 制服肉丝袜亚洲中文字幕| 女人18片毛片90分钟免费明星| gogogo高清在线观看免费视频 | 九九九九大陆成人综合精品| 亚洲巨乳久爽一二三区| 久久精品中文字幕无码| 精品欧美一区二区三区***在线| 国产另类xxxx| 国产l精品国产亚洲区在线观看| 国产精品一二三区在线观看| 国产乱人伦无无码视频试看| 国产一二三四视频在线观看| 久久婷婷五月综合色99啪| 歪歪爽蜜臀av久久精品人人| 99国产热精品主播在线观看| 97成人做爰a片无遮挡直播| 日韩免费无码视频一区二区三区| 665566综合中文字幕在线| 韩国n号房视频+在线观看 | 久久无码人妻一区二区三区| 日韩精品免费一区二区三区竹菊| 男人+高清无码+一区二区| 天天综合在线观看| 午夜免费一区二区三区视频| 国产精品久久久久久亚洲AV| 亚洲精品成人片在线观看精品字幕| 欧美日韩国产中文字幕在线播放| 日本任你躁免费精品视频2| 欧美成人高清视频| 丰腴饱满的极品熟妇| 欧美视频在线观看完整版中文| japanese国产在线看| 国产一线天粉嫩馒头极品av| 婷婷俺也去俺也去官网| 欧美日韩国产一区二区三区综合| 欧美日韩在线四区| 日日摸夜夜添夜夜添无码免费视频 | 国产精品一卡2卡三卡4卡| 免费无码一区二区三区a片18| 亚洲另类国产精品中文字幕| 岛国片人妻三上悠亚| 日本人六九视频69jzz免费| 日日噜噜噜夜夜爽爽狠狠视频| 免费av资源网站在线观看| 欧美+国产+麻豆| 国产经典一区二区三区| 成人精品gif动图一区| 东京热人妻丝袜无码av一二三区观| 中文有码人妻熟女久久| 丰满人妻做爰2理伦片免费看| 中文字幕av网站| 久久亚洲私人国产精品| 日韩中文字幕影院| 国产亚洲精品第一综合不卡| 亚洲欧美中文曰韩国产综合| 日韩在线观看免费全集电视剧网站| 中文日韩欧免费视频| 国色天香成人一区二区| 欧美综合在线视频| 国产精一品亚洲二区在线播放| 精品国产第一区二区三区有码| 亚洲精品乱码久久久久久日本| 国产少女免费观看电视剧字幕大全 | 亚洲乱码国产乱码精品精乡村| 色天天综合久久久久综合片| 婷婷嫩草国产精品一区二区三区| 婷婷五月六月激情综合色中文字幕 | 夜夜躁狠狠躁日日躁视频| 亚洲欧美自拍色综合图| 国产情侣在线播放| 天天天欲色欲色www免费| 色猫咪免费人成网站在线观看| 青娱乐国产盛宴视频在线观看| 国产精品中文字幕有码在线观看| 欧美成人一区二区三区| 天美麻花果冻视频大全英文版 | 7777淫语有声小说| 成年女人免费视频| 久久人妻少妇嫩草av蜜桃漫画| 亚洲精品图片区小说区| 亚洲婷婷五月综合狠狠app| 一级黄色免费大片| 国产成人精品久久二区二区四季| 最新国产成人av网站网址麻豆| 日韩在线观看视频精品资源 | 大地影视中文资源3| 曰韩无线无卡tⅴ一二三区| 国产欧美福利v888av| 亚洲精品7777777| 国产精品高清一区二区不卡片| 国产+女女+喷水| 87福利午夜福利视频少妇| gogogo免费完整国语| 国产真人真事毛片视频| 国产+高潮+护士| 亚洲人成影院免费国产精品成人 | 日韩专区亚洲综合在线观看免费完整版| 精品丝袜国产自在线拍小草| 大帝av在线一区二区三区| 少妇爆乳无码专区| 亚洲一区二区三区国产| 亚洲日韩一区二区一无码| 大象一区一品精区搬运机器| 国产精品一区二区三区成人 | 国产内射xxxxx在线| 国色天香成人一区二区| 国产成人高清亚洲明星一区| 18禁黄网站男男禁片免费观看| 强开小婷嫩苞又嫩又紧韩国视频 | 一级A片60分钟免费看| 97在线播放免费观看全集电视剧 | 亚洲国产精品一区二区久久hd| 天堂岛视频在线观看欧美日韩| 成人免费一区二区国产精品| 亚洲国产欧美日韩精品久久久| 天堂在线天堂新版www| 樱花在线视频免费观看电视剧| 欧美日韩国产中文字幕在线播放| 欧美一区午夜精品久久福利| 成人免费在线观看h视频| 亚洲欧美成人一区二区三区| 欧美日韩视频在线观看一区| 亚洲精品成a人在线| 国产欧美国产精品第一区| 一级午夜黄色视频| 国产女人18毛片水真多1| 无码综合天天久久综合网| 嫩草一区二区极品在线观看| 久久女人天堂精品av影院麻| 欧美日韩一区二区三区自拍| 午夜精品一区二区三区在线播放| 99精品国产一区| 2020天天谢天天吃天天麻豆v| 免费看无码网站成人A片| 99精品视频九九精品视频| 麻豆果冻传媒2021精品传媒一区下载| 夜色毛片永久免费| 一级黄色大片免费观看| 成人视频在线18| 久久久噜噜噜久久久精品| 精品久久久久久久久久久久包黑料| 山东乱子伦视频国产| 久久人妻少妇嫩草av红粉| 精品国产成人亚洲午夜福利 | 国产Av午夜精品一区二区三区| 国产女人叫床高潮视频在线观看 | 中字幕一区二区三区乱码| www成人国产高清内射| 日韩在线一区高清在线| 亚洲午夜久久久久久国产精品| 久久精品国产一区二区三区 | 亚洲精品久久久久一区二区三区| 亚洲丝袜制服在线观看视频| 成人免费观看cn| 2021久久超碰国产精品最新| 日本一区二区更新不卡| 国产精品一区二区av在线| 国产精品久久久久久久久久久久午夜片| 亚洲成av人片天堂网站| 四虎影视1515hhc0m| 337p日本欧洲亚洲大胆在线| 国产精品高清尿小便嘘嘘主演| 岛国片在线播放97| 警花av一区二区三区| 国精品午夜福利视频2021| 日韩一区二区av网站在线观看 | 国产欧美日韩一区二区三区在线| 天堂bt种子在线最新版资源| 国产不卡中文字幕在线观看| 香蕉视频在线免费看| 狠狠综合久久久久尤物丿| 亚洲无AV在线中文字幕| 亚洲18禁私人影院| 嫩草一区二区极品在线观看| 宅女午夜福利免费视频| 高潮+喷水+免费| 日韩av免费在线看| 成人做爰视频www| 久久久久人妻一区精品果冻| 午夜成午夜成年片在线观看| 亚洲欧美精品久久久久| 国产精品久久久久久久密月| 天堂网www在线资源最新版| 国产精品国产自线拍免费软件 | 国产+欧美+精品| 日韩激情在线观看| av无码精品一区二区三区三级| 蜜臀AV午夜精品久久| 国产亚洲欧美在线观看三区| 国产精品成人亚洲一区二区| 亚洲AⅤ无码国精品中文字慕| 人妻无码少妇一区二区| 中文毛片无遮挡高清免费| 神马视频在线观看亚洲福利| 嫩草嫩草嫩草嫩草嫩草| 西西GoGoGo高清在线完整版| 中文字幕日本在线| 国产美女免费无遮挡网站| 欧美久久久久久久久久久久久久| 欧美日韩国产成人综合在线影院| 亚洲综合无码一区二区三区不卡| 亚洲乱码国产乱码精品精小说| 国产精品理论片在线播放| 国内精品久久久久影院薰衣草 | 久久久久蜜桃精品成人片| 日韩欧美国产亚洲一区二区| 久久精品国产亚洲精品| aa亚洲永久免费精品免费| 水牛影视一区二区三区久| 欧美日韩在线精品一区二区a| 亚洲人成人7777在线播放 | 日本高清不卡a免费观看| 高清有码国产一区二区| 在厨房拨开内裤进入毛片| 亚洲国产精品成人久久久久| 蜜臀精品国产高清在线观看| 99re在线视频这里只有精品| 亚洲最新中文字幕成人| 精品亚洲精品第—区| 欧美+日本+国产| 亚洲精品久久久久中文字幕欢迎你| 成人无码www免费视频嘿嘿软件| 日本一区二区视频| 国产女子爆操高潮免费视频| 中国特级黄色毛片| av影片在线观看| 无遮挡又色又刺激的视频+黄| 人妻av无码专区久久| 一区精品视频在线观看免费| 日韩精品不卡在线| 日本xxxx色视频在线播放| 欧美精品午夜一区二区三区| 欧美黑人欧美精品刺激| 国产+日韩+欧美| 91偷拍精品一区二区三区| 麻豆国产成人av高清在线观看 | 天堂va蜜桃一区二区三区| 亚洲综合小说另类图片五月天| 久久这里只有精品久久91| 丝袜+欧美+国产| 国产日韩欧美一区| 国产熟女高潮精品视频区| 久久久久久久久久久久中文字幕 | 亚洲五月丁香综合视频| 欧美一区二区影院| 国产精品久久久久久影院| 午夜三级a三级三点窝| 欧美日本一区二区三区免费| 欧美日本91精品久久久久| 2014av天堂无码一区| 亚洲人成在线播放网站| 久蜜av色av熟女一区| 三级高清日本久久| 不卡一区二区视频日本| 久久久噜噜噜久久久精品| 三年片在线观看免费观看大全+下载| 琪琪777午夜理论片在线观看播放| 欧美日韩免费不卡激情在线视频| 小视频国产在线观看网站| 2022av视频| 国产成在线观看免费视频密| 国产精品无打码在线播放| 久久精品国产亚洲AV免贵| 国内乱子对白免费在限| 亚洲国产精品一区二区成人片不卡| 国产精品久久久福利| 中文字幕+成人av| 97超级碰碰人国产在线观看| 久久久综综合色一本伊人| 久久亚洲精品小早川怜子| 久久精品亚洲熟妇少妇任你躁| 久久五十路丰满熟女中出| 在线视频欧美亚洲| 国产成人免费av片久久| 亚洲一区二区三区欧美| 日韩人妻无码中文字幕视频| 欧美精品国产精品日韩系列| 亚洲永久免费播放片国产| 亚洲+日韩一区二区| 狠狠色婷婷久久综合频道日韩| 久久综合婷婷成人网站| 欧美激情一区二区三区高清视频| 巨茎人妖videos另类| 在线观看+成人免费视频+不卡| 国产亚洲一卡2卡3卡4卡网站| 欧美精品一区二区久久婷婷| 在线观看国产色视频网站| 国产免费观看高清电视剧在线观看| 国产精品久久久久久久天堂| 亚洲熟女少妇精品| 全国最大的成人网| 中文字幕乱偷无码av先锋蜜桃| 日韩内射人妻1区2区3区| 一区二区三区四区欧美极品| 亚洲七七久久桃花影院| 天天鲁一鲁摸一摸爽一爽| 亚无码乱人伦一区二区| 国产精品一区二区三区成人| 国产伦理久久精品久久久久| 亚洲欧美日韩中文字幕一区二区| 欧美国产日韩在线观看视频一区| 福利视频中文字幕一区二区| 日韩色在线精品视频观看| 91贵在真实少妇SPA推油按摩| 国产青草视频在线观看免费影院| 国产午夜精品福利视频| 97久久超碰精品视觉盛宴| 777奇米四色成人影视色区| 国产高清精品软件| 久久精品国产自清天天线| 精品+国产+高潮| 青青青国内视频在线观看软件| 日韩久久免费视频| 亚洲人成在线播放网站岛国| 日本淫片免费啪啪3| 亚洲无码高清一区二区三区视频| 蜜桃tv一区二区三区| 高清国产下药迷倒白嫩| 永久综合精品网站在线免费观看| 综合影视中文高清| 国产精品成人av在线观看春天| 国内精品伊人久久久久777| 巨茎人妖videos另类| 久久www免费人成人片| 亚洲+精品+欧美| 久久91综合国产91久久精品| 欧美日韩一区二区三区aa| 国产免费网站在线观看| 欧美热久久这里只有精品| 人妻丰满熟av无码区HD| 一个人看的视频+www+动漫| 天堂在线一区二区| 人人射欧美一区二区三区| 中文字幕不卡视频| 亚洲综合一区和综合二区 | 国产午夜精品福利视频| 久久这里只有精品久久91| 国产精品自产拍100在线观看| 一级香蕉视频在线观看| 综合激情久久综合激情| 亚洲欧美日韩中文久久| 伊人亚洲大杳蕉色无码| 欧美一级视频在线观看三级 | www国产亚洲精品久久麻豆| 男人天堂视频网站| 日本高清免费毛片久久| 欧美乱码精品一区二区| 亚洲午夜精品一区二区三区国产| 日韩中精品文字幕在线一区| 日本欧美国产一区二区在线观看| 91麻豆国产自产在线观看亚洲| 毛多水多丰满女人A片| 国产传媒麻豆剧精品av国产 | 18禁美女黄网站色大片免费看| 免费人成视频19674不收费| 99久久精品久久久久久动态片| 中文字幕日本亚洲欧美不卡| 麻豆精品人妻一区二区三区蜜桃| 综合成人欧美网日韩青椒网| 精品国产综合久久久久| 正在播放懂色av| 国产毛片一区二区三区| 精品女同一区二区三区免费站| 日本高清不卡a免费观看| 国产又粗又爽又猛又大的动漫片| 国产女同一区二区在线观看| 欧美日韩在线四区| 99久久精品国产波多野结衣| 国产精品久久久久久亚洲色| 你懂的网址在线观看| 亚洲午夜久久久精品影院| 18禁美女黄网站色大片免费看| 日韩视频在线国产成人| 色婷婷综合缴情综在线播放| 中文字幕+欧美+日韩| 日韩精品福利片毛片在在线看的 | 高清无码不用播放器av| 亚洲欧美综合色视频播放| 日韩精品+伦理视频+在线观看| 日本爽爽爽爽爽爽在线观看免| 最新黄色网址在线观看| 中文字幕欧美精品一区二区三区| 免费网站观看www在线观看| 亚洲午夜精品一区| 女同亚洲一区二区无线码| 欧洲免费无线码在线一区| 国产美女在线观看| 成版人看片app私人影院| 午夜免费视频观看| 衣服被扒开强摸双乳18禁网站| 亚洲精品成人av无码| 在线看片免费人成视久网不卡 | 熟妇诱惑一区二区三区四区| 久久成人免费精品网站| 粉嫩av一区二区三区四区五区| 国产午夜福利100集发布 | 痴女+巨乳+熟女| 手机免费av在线| 少妇一级淫片免费视频| 免费观看成年人网站| aaa欧美色吧激情视频| 日韩精品免费一区二区三区竹菊| 美女久久久久久久久国产| 朋友的妻子+先锋影音| 亚洲精品国产自在现线最新| 天堂网www在线资源网| 国产又黄又爽又色视频免视频 | 521av在线视频中文字幕| 天美麻花果冻视频大全英文版| 国产极品美女到高潮| 国产精品偷伦视频观看免费| 欧美成人+精品一区+在线观看 | 在线观看免费www| 日本人妻免费一区二区三区| 欧美日韩在线四区| 午夜视频在线观看1区2区免费| 中文字幕一区二区国产| 少妇又色又紧又爽又高潮| 色婷婷av一区二区| 五月婷婷综合在线观看| 中出あ人妻熟女中文字幕| 天天狠天天插天天透| 久久天天躁狠狠躁夜夜96流白浆| 午夜国产福利小视频在线| 国产又粗又黄的视频免费| 国产+欧美日韩+一区二区三区| 影音先锋+成人资源| 久久成人免费网站| 黄色欧美在线观看| 亚洲一久久久久久久久| 人人妻人人爽人人澡人人| 国产91精品高清一区二区三区| 人人爽久久涩噜噜噜av | xxxx日本免费| 国产免费黄色小视频| 欧美a中文字幕在线播放| 青青草+深夜福利+免费观看| sao货妓女的yin荡生活| 成人午夜片在线免费观看 | 乱子伦国产对白在线播放| 国产精品线在线精品| 中文字幕人妻丰满熟妇| 国产女生高潮视频免费网站| 欧美大片ppt免费2023| 精品亚洲欧美日本在线观看| 日韩人妻无码精品一专区| 337p日本欧洲亚洲大胆裸体艺术| 一区二区三区国产精| 国产黄色片网站大全| 国精品午夜福利视频2021| 真人做爰高潮全过视频| 永久免费无码日韩视频 | 影音先锋+中文+人妻| 精品国产日韩欧美一级一区二区三区| 少妇一区二区三区无码视频| 国产乱淫av蜜臂片免费| 国产区在线观看视频| 强开小婷嫩苞又嫩又紧韩国视频| 久久精品国产第一区| 亚洲欧美日韩中文久久| 久久久久久亚洲精品专区| 0855午夜福利| 成人做爰黄A片免费看陈冠希| 欧美激情伦理一区二区三区| 亚洲国产成人综合| 天天摸天天摸色综合舒服网| 亚洲成亚洲乱码一二三四区软件| 精品国产成人a区在线观看| 欧美午夜精品久久久久久视| 精品熟女少妇av免久久| 国产成人av综合久久视色| 在教室被同桌cao到爽漫画| 亚洲成色A片77777在线小说| 日韩国产欧美激情在线视频| 午夜福利啪啪体验区| 在线精品一区二区三区| 99国产欧美另类久久片| 亚洲色精品三区二区一区| 日本一区二区三区视频在线| 国产少女免费观看电视剧字幕大全| 亚洲欧美精品伊人久久| 亚洲日韩欧美在线无卡| 欧洲s码亚洲m码精品一区| 国产69久久久欧美一级| 亚洲黄色免费网站| 在线观看av网站永久免费观看| 亚洲一区二区视频在线观看网站| 国产成人亚洲日韩欧美久久| 久久精品这里热有精品| 国产在线高清理伦片a| 国产综合亚洲区在线观看| 精品国产乱码久久久久久蜜柚 | 99久久久国产精品一区| 精品久久久久久久免费人妻| 99久久亚洲综合精品成人网| 日韩精品不卡在线| 成全视频在线观看完整动画片| 国产资源在线观看| 夜夜嗨av一区二区三区中文字幕 | 精品99久久久久久| 国产一级做a爰片久久毛片男| 欧洲av+成人+久久| 久久精品国产精品亚洲艾草网| 青草伊人久久综在合线亚洲观看| 中文字幕日韩一区二区不卡 | 正在播放+日韩+无码| 99久只有精品免费视频播放| 国产亚洲曝欧美精品手机在线| 亚洲免费在线观看| 国产探花视频91av视频| 国产最新精品自产在线播放 | 亚洲午夜福利精彩视频在线观看| 国内精品久久久久久久影视麻豆| ww污污污网站在线看com| 日韩做a爰片久久毛片a片| 成人精品啪啪欧美成| 美女久久久久久久久久| 嫩草嫩草嫩草久久水拉丝了| 亚洲天堂制服丝袜在线观看| ⅹⅹⅹ黄色片视频| 18+sexporn| 精品久久香蕉国产线看观看亚洲| 国产一级做a爰片久久毛片男| 日韩精品爆乳高清在线视频观看| 日韩欧美国产一区二区福利 | 人妻av中文字幕久久| 【乱子伦】国产精品.| 国产av制服二区三区av系列| 亚洲国产麻豆精品系列av| 亚洲18在线看污www麻豆| 国产真实伦在线观看视频| 在线观看+中文字幕| 日韩在线观看永久免费视频| 丁香啪啪综合成人亚洲小说| 国产精品国产三级国产不产一地| 国产精品久久久天天影视香蕉| 国产亚洲精品a第一页| 国产乱人伦精品一二三区二区| 夜夜嗨av一区二区三区| 一级一级特黄女人精品毛片| 天天免費国产在线观看| 精品国产第一区二区三区有码| 久久视频这里有久久精品视频11| 国内精品人妻无码久久久影院| 国产精品久久久久久久久久不蜜月| 丰满少妇人妻久久久久久| 欧美+国产+日韩在线| 日韩精品区一区二区三vr| 国产成人在线视频网站| 小小小蜜桃6免费观看电视剧高清| 丰满少妇内射一区| 91偷自产一区二区三区精| 精品国产成人在线一区二区| 国产妇女馒头高清泬20p多毛| 久久久久午夜精品色av| 日本国产成人国产在线播放| 精品精品精品国产自| 最近免费日韩在线视频观看| 粉嫩一区二区三区四区公司1 | 无码AⅤ精品一区二区三区| 中文字幕妇偷乱视频在线观| 国产噜噜噜精品免费视频 | 色综合久久久久综合99| 国产欧美在线观看不卡| 妇女嫩BBB揉BBBBBB搡| 亚洲国内精品av五月天| 福利片+国产+合集| 黄网站在线免费永久观看| 欧美久久久久久久久高潮视频| 亚洲一区二区三区四区五区黄| 午夜理论欧美理论片| 八十路で初撮り老熟妇中国 | 91在线视频免费看| y111111111免费观看电视| 久久久91精品国产一区二区精品| 国语自产拍无码精品视频| www波多野结衣com| 三年成全免费观看影视大全| 亚洲欧美日韩另类精品一区二区三区| 理论片+亚洲+欧美| 国产女精品视频网站免费| 欧美+日本+国产在线观看| 久久亚洲精品国产精品| 日韩+欧美+18| 久久亚洲精品无码观看网站| videosxxxx老女人| 亚洲综合久久一本伊一区| 日本无卡码高清免费v| 大地资源二中文第二页在线| 艳妇乳肉豪妇荡乳av无码福利| 久久男人高潮av女人天堂| 黄色一级大片在线免费看产| 最新黄色在线观看一区二区三区 | 偷柏自拍亚洲综合在线| 成人亚洲a片v一区二区三区蜜月| 在线亚洲综合欧美网站首页| 三级高清中文欧美| 国产亚洲精品久久精品6| 国产乱xxxxx97国语对白| 这里有精品中文字幕在线视频| 国产在线精品观看| 日本一区二区免费在线观看| 久久精品欧美亚洲一区二区三区 | 两根茎一起进去好爽a片在线观看| 懂色av蜜臀av粉嫩av分享吧| 国产精品久久久久久婷婷天堂| 日韩精品av在线免费观看| 国产精成a品人v在线播放| 国产精品中文原创av巨作首播| 亚洲高清在线视频| 久久99精品久久久久久噜噜| 久久中文免费视频| 欧美日本亚洲视频一区二区| 国产精品久久久久久久久久不蜜月| 五月丁香综合激情| 日韩精品av在线免费观看| 嫩草嫩草嫩草久久水拉丝了| 国产成a人亚洲精品在线观看| 色欲色欲久久综合网| 男女污在线亚洲午夜视频| 262+母乳+影音先锋| 国产熟妇高潮呻吟喷水| 国产精品高清尿小便嘘嘘主演| 欧洲精品在线播放| 欧一美一婬一伦一区二区三区麻婆| 91精品国产综合久久久久| 中文文字幕一区二区三三| 蜜桃又黄又粗又爽av免| 欧美一级a片一区二区三区| 久久99国产精品久久99果冻传媒新版本| 国产乱人激情h在线观看| 人摸人人人澡人人超碰手机版| 欧美老妇另类老屁XXX| 四虎成人精品永久网站| 日韩午夜福利无码专区a| 国产精品久久久久久99人妻精品|