精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測(cè)機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測(cè)就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因準(zhǔn)確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測(cè)基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測(cè),佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測(cè)產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測(cè)準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來(lái)了,就說(shuō)兩句!
請(qǐng)自覺(jué)遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測(cè)信息技術(shù)部

99久久亚洲综合精品成人网| 婷婷久久精品国产色蜜蜜麻豆| 亚洲2017天堂色无码| 欧美不卡一卡二卡三卡| 亚洲国产精品va在线观看香蕉| 日韩人妻偷拍一区二区三区 | 亚洲人成影院免费国产精品成人| 《巨乳人妻》风间由美| 在线中文字幕视频| 国产精品欧美久久久无广告| 亚洲欧美日本中文字天堂| 国产91麻豆一区二区在线| 大波美女一级a久久午夜| 亚洲午夜久久久影院| 亚洲欧美精品中文一区二区三| av免费看片一区二区三区| 国产+日韩+欧美成人| 中文字幕日本精品一区二区三区| 人妻丨绿帽丨91Porn| 真人女处被破69x176cc| 日韩欧美视频一区二区三区| 日韩毛片+18+免费看| 免费人成视频19674不收费| 综合成人欧美网日韩青椒网| 八戒青柠影院观看免费高清电视剧 | 国产精品国产精品国产| 一个人免费视频www在线观看| 国产美女久久久久久久久久久久| 久久人人97超碰国产精品| 久久久久久久91| 亚洲精品久久久久中文字幕| 97人伦色伦成人免费视频| 精品亚洲国产日韩女人av..| 亚洲色老汉av无码专区最| 国产精品99久久久久久人红楼| 国产亚洲曝欧美精品手机在线| 国产又色又爽又高潮免费| 精品国产露脸久久av| 色偷偷人人澡人人添老妇人| 最新久久99国产亚洲高清观看首页视频| 国产+精品+在线观看| 国产绿帽精黑人X88AV| 日本美女直播一区二区三区| 日韩在线看片免费人成视频播放| aaa女人18毛片水真多| 国产激情视频在线| 国产+喷水+白浆| 人妻丝袜中文字幕在线视频| 国产亚洲久久久久久久| 亚洲七七久久精品中文国产| 91兰州熟女富婆露脸| 一级二级三级毛片| 国产精品视频全国免费观看| 丫丫影院免费观看电视剧| 久久国产午夜精品理论片| 777琪琪午夜伦倩电理片686还没。com | 国产国拍亚洲精品永久软件| 在线观看视频免费观看91| www.delisava.com| 免费人成在线观看网站免费观看| 在线观看日韩欧美综合黄片| 亚洲+日韩+专区| 人妻の乳を揉んで痴汉| 99国产在线视频有精品视频| 熟女俱乐部五十路二区av| 欧美孕妇孕交xxx| 久久综合88中文字幕| 日本老熟妇乱子伦精品| 亚洲最大视频在线免费观看 | 精品中文字幕在线观看| 免费在线观看AV| 国产女精品视频网站免费| 成人在线手机视频| 精品欧美在线观看视频二区| 久久中文字幕无码一区二区| 亚洲第一视频在线播放| 美女互摸视频一区二区三区| 久久久久久久久久99精品| 欧美成人高清视频| 国产伦久视频免费观看视频| 丰满双乳峰白嫩少妇成人网站 | 精精国产xxxx视频在线观看| 精品国产乱码久久久久| 亚洲精品乱码久久久久久按摩 | 国产成a人片在线观看麻豆 | 亚洲无AV在线中文字幕| 久久久久久久久久99精品| 熟妇人妻无乱码中文字幕蜜桃| 国产精品二区一区二区aⅴ污介绍 欧美精品v欧洲高清视频在线观看 | 亚洲精品一区三区三区在线观看| 美女视频图片久久黄网站| 麻豆果冻传媒精品国产苹果 | 97色伦综合在线欧美视频 | 免费看av的网址| 久久久久免费看成人影片| 日韩激情一区二区三区| 免费观看成人毛片| 精品视频在线免费观看一区 | 夜夜高潮夜夜爽精品欧美做爰| 在车里被高潮被c了八次| 伊人色综合久久天天网| 农村末发育av片一区二区| 国产又黄又大视频| 原创婹农村熟女v88Av| 久久精品国产精品青草app| 欧美高清美女视频一区二区三区| 91绿帽黑人系列一区| 中文字幕国产专区欧美激情| 中文字幕日本精品一区二区三区| 亚洲欧洲美色一区二区三区| 亚洲精品无amm毛片| 人妻少妇邻居少妇好多水在线| 酒吧+天海翼+影音先锋| 日韩欧美国产一区二区在线播放 | 国产精品一区免费在线看| 国产精品国产a级| 日本一区二区视频| 黑人按摩人妻HD中字3| 色偷偷人人澡人人爽人人模麻豆| 蜜臀AV午夜精品久久| 日本在线视频网站+www+色| 精品乱码一区二区三区四区| 亚洲国产视频精品一区二区| 男人扒开女人双腿猛进免费视频| 久草香蕉在线视频国产乱码精品一区二区三上 | 亚洲精品92内射| 免费大片av手机看片高清| 香蕉97超级碰碰碰免费| 日韩亚洲国产中文永久| 中国东北少妇bbb真爽| 麻豆亚洲AV无码精品色尤物| 日韩精品人妻系列无码专区| 久久精品国产萌白酱一区二区| 中文字幕亚洲综合久久综合| 亚洲天堂成人在线观看| 精品国产乱码久久久久| 亚洲免费视频一区二区| 国产欧美一区二区精品久久久| 无码综合天天久久综合网| 国产+成人+欧美| 欧美国产日韩在线一区二区三区 | 亚洲综合无码av一区二区三区| 亚洲欧美日韩中文加勒比| 黄色一级大片在线免费看产| 清纯唯美一区二区三区| 国产伦精品一区二区三区综合网| 麻豆国产av一区二区三区| 大地资源网在线观看入口| 麻豆专媒体一区二区| 2021久久超碰国产精品最新| 日本欧美一区视频在线观看| 美女视频黄免费国产91| 星空传媒天美传媒有限公司| 99re在线观看视频在线观| 一本色道久久精品| 中文字幕一二三区波多野结衣| 色欲综合久久中文字幕网| 国产人妖在线视频| 老子影院在线观看理论片| 亚洲色图av在线| 亚洲精品国产一区二区在线观看| 国产精品久久久久久三级| 亚洲一区二区三区在线观看精品中文| 中文+字幕+国产| 2020国产精品久久久| 中文字幕在线日韩欧美在线观看| 国产情侣在线播放| 日韩高清在线亚洲专区小说| 国产亚洲精品久久久久久小舞| 久久综合婷婷丁香五月中文字幕| 国产麻豆乱码精品一区二区三区| jav+中文字幕| 日本三级高清视频| 国产艳妇av在线| 免费又黄又湿又爽的视频| yy111111少妇嫩草影院| 18+动漫视频网站| 免费观看mv大片高清| 99亚洲精品久久久99| 亚洲精品国产一区二区三区在线观看 | 粉嫩99精品99久久久久久桃色 | 丰满人妻无奈张开双腿av| 在线+免费+国产| 在线观看人成视频网站不卡| 欧洲av成本人在线观看免费 | 国产成a人片在线观看麻豆| 巨乳+群p+在线| 美女+人妻+日韩毛片| 免费在线观看午夜片网站| 18+国产+成人| 久久天天躁狠狠躁夜夜网站 | 国产成人精品男人的天堂网站| 成人一区二区三区视频xxx| 久久天天躁日日躁狠狠躁 | 深夜福利在线播放| mm131亚洲国产美女久久| 六月丁香婷婷综合| 国产成人精品亚洲精品| 亚洲精品视频免费| 国产a在亚洲线播放| 久久99精品国产麻豆婷婷| av无码+高潮+白丝| 国产一二三四视频在线观看| 中文字幕一区二区三区波野结| 中文字幕精品999av| 中国国产免费毛卡片| 黄色一级片免费播放| 国内精品国语自产拍在线观看| 天堂岛视频在线观看欧美日韩| 国产特级黄片视频免费在线观看| 欧美巨大xxxx做受中文字幕| 老a影视精品无码视频| 国产成人午夜福利院| 久久天天躁夜夜躁狠狠躁综合| 亚洲成av人片在线观看天堂无| 亚洲综合另类小说色区一| 又色又爽又黄的视频女女| 亚洲欧洲国产日韩在线不卡| 亚洲+欧美+综合| 亚洲国产精品一区二区久久阿宾| 欧美成人精品高清在线观看| 国产亲子乱a片免费视频| 中文字幕+乱码+无忧| аⅴ天堂中文在线| 激情文学午夜视频在线观看| 亚洲最大av无码网站最新| 熟妇人妻系列aⅴ无码专区友真希| 一级一级特黄女人精品毛片| 中文字幕av一区二区三区| www成人在线观看| 日韩欧美成人免费观看| 青青草97国产精品免费观看 | 欧美精品99久久久久久人| 久久午夜无码鲁丝片秋霞| 日韩国产高清在线| 东京热一本大交乱HD| 蜜臀av免费一区二区三区久久乐| 国产亚洲AV片在线观看18女人| Ts人妖紫苑口爆丝袜| 中日韩国产高清在线观看| 2021国产精品午夜久久| 成人精品一区二区三区中文字幕| 国模大胆一区二区三区 | 精品久久久久久亚洲综合网站| 98+亚洲+在线视频| 午夜小视频免费观看| 久久天天躁夜夜躁狠狠85| 久久伊人精品影院一本到综合| 熟女人妻av完整一区二区三区| 696息子精品一区| 国产精品一区二av18款| 东京热特级变态被虐sm| 欧美人成在线视频| 国产一区二区在线观看+在线播放| 亚洲AV成人片无码网| 欧美视频一区二区| 亚洲精品国产专区91在线| 亚洲男女内射在线播放| 日本高清毛片中文视频| 好男人日本社区www| 国产乱人伦偷精品视频下| 天天综合亚洲色在线精品| 黄色一级大片一区二区三区| 婷婷久久精品国产色蜜蜜麻豆| 日韩在线视频+在线播放| 久久久久国产视频| 亚洲愉拍99热成人精品热| 黄色一区二区三区视频| 欧美日韩精品人妻九区911| 97精品一区二区视频在线播放 | 亚洲男同视频网站| 欧美成人午夜免费全部完| 精品亚洲国产日韩女人av..| 国产成人免费av片久久| 国产精品激情在线观看| 中文字幕日韩欧美一区二区| 国产人妖在线视频| 精品亚洲成熟女人www| 亚洲人成网址在线播放| 国产精品码在线观看0000| 日韩一区二区视频| 国产免费的又黄又爽又色| 日本爽爽爽爽爽爽在线观看免| 久久精品苍井空精品久久| 中文欧美日韩久久| 日韩欧美中文字幕在线观看免费| 日产精品一二三四区国产| 亚洲熟妇av一区二区三区痴汉| 亚洲天堂第一在线视频看看 | 在线观看日韩欧美综合黄片| 日韩午夜激情视频| 成片在线看一区二区草莓| 国产情人综合久久777777| 中文字幕日本亚洲欧美不卡| 亚洲精品国产精品乱码在线观看| 成人国产精品免费网站| 女人的天堂a国产在线观看| 久久久综综合色一本伊人 | 日韩av不卡一区| 国产精品自在77777国产| 在线观看麻豆国产成人av在线播放| 国产免费踩踏调教视频| av一区二区在线播放| 中文字幕99免费精品视频网 | 日韩av大片在线观看| 国产又粗又长又硬又黄视频| 在线永久免费观看的毛片| 国产亚洲人成站在线播放国产99| 高H荤爽肉欲文〈np〉宝玉| 天堂网www在线资源网| 三年片在线观看高清完整版| 日本熟妇japanese丰满| 中年熟女の绝顶中出| 精品熟人一区二区三区四区| 国产美女内射啊啊高潮在线网页| 一本一本久久a久久精品综合不卡| 少妇一级淫免费放| 伊人色综合久久天天网| 少妇嫩搡BBBB搡BBBB| 亚洲日本在线在线看片4k超清| 青娱乐国产盛宴视频在线观看 | 国产乱码一区二区三区观看| 国产精品免费观看调教| 在线+欧美+国产| 白嫩无码人妻丰满熟妇啪啪区百度| 丁香六月婷婷激情免费视频| 大粗鳮巴征服女教师| 99久久免费视频在线观看| 中文字幕一区三级久久日本| 中文字幕在线视频第一区二区| 在车里被高潮被c了八次| 日本精品videosse×少妇| 4k超清JAV无码| 99国产精品污污污网站免费看| 天堂在线www四虎国产精品| 中文在线字幕观看电视剧hd | 日韩成人免费视频| 在线天堂新版资源www| 爆乳熟妇一区二区三区霸乳| 成人午夜精品无码区久久| 91兰州熟女富婆露脸| 精品国产精品一区二区夜夜嗨| 《朋友的妈妈2》中字头歌词华丽的外出| 白丝+美女+高潮| 99精品久久久久久久婷婷| 亚洲精品无码你懂的网站| 懂色av绯色av密臀av| 福利片一区二区三区| av狠狠色丁香婷婷综合久久| 色婷婷av久久久久久久| 一区二区精品视频大全在线播放| 国产又色又爽无遮挡免费动态图| 成全在线观看免费完整| 高湖毛片7777777毛片| 2018国产天天谢在线观看| 国产免费福利在线视频| 国产乱码人妻一区二区三区四区| 91亚洲欧美中文精品按摩 | 亚洲欧美在线视频| 亚洲精品无码久久千人斩探花| 日韩精品一区二区Av在线| 国产精品日产欧美一区二区三区| 成人免费无遮挡无码黄漫视频| 国产精品久久久久久久免费大片 | 亚洲+日本+高清| 欧美国产日韩亚洲中文| 手机在线视频国产第二页| 午夜精品第一区第二区第三区| 国产精品成人一区二区三区吃奶| 麻豆果冻传媒潘甜甜丶| yy777777丰满少妇影院| 久久国产精品久久喷水| 亚洲欧美不卡高清在线| 国产免费不卡av在线播放| 免费+高潮+白丝| 天天av影院免费看| 青椒国产97在线熟女| 欧美黑人喷潮水xxxx| 国产大片黄在线观看私人影院| 午夜精品久久久久久| 一区二区免费欧美| 免费大片一级a一级久久三| 日韩乱码在线观看免费视频网站| 精品国产自在精品国产浪潮| 国产一区二区蜜臀av在线| 国产婷婷av片在线观看| 久久久国产一区二区三区四区小说 | 2021年国产精品自线在拍| 国产一区二区av在线免费观看| 不卡+一区二区视频+日本| 亚洲国产精品久久久久久| 国产国产精品久久久久久久| 天天综合亚洲色在线精品| 成人做爰A片免费看网站草莓| 国产精品一区二区含羞草| 嫩草欧美曰韩国产大片| 无套内射波多野结衣| 亚洲视频一区亚洲视频一区| 免费在线观看AV| 国产真实乱偷精品视频| 国产精品嫩草影院桃色| 亚洲欧洲成人a∨在线观看| 国产一级av一区二区在线| 八戒青柠影院观看免费高清电视剧| 中文字幕视频在线欧美一区| 亚洲a∨大乳天堂在线| 东北高大丰满BBBBzBBB| 蜜臀久久99精品久久久无需会员| 亚洲AV日韩AV永久无码网站| 北条麻妃精品99青青久久水牛影视| 免费+高清+国产| 色综合天天综合欧美综合| 熟女服务区免费一区二区三区| 亚洲处破女av一区二区中文| 亚洲欧美视频在线播放| 精品黑人一区二区三区| 人妻少妇精品一区二区三区| 7777影视大全免费追剧小别离| 亚洲欧美日韩国产成人一区| 欧美精品中文字幕在线视| 熟妇~x88AV翔田千里| 亚洲午夜精品一区二区国产| 国产三级国产精品专区50| 99久久亚洲综合精品成人网| 日韩av三四级在线观看| 国产成人久久av免费高清密臂| 成人精品一区二区三区网站 | 国产精品久久久久久久久久久免费看 | 成人18+免费视频| 国产女人在线观看| 国产熟女一区二区三区视频蜜月| 国产乱码精品一区二区三区四川| 色色色色色五月丁香婷婷| 国产极品美女到高潮| 日韩精品成人无码专区免费| 麻花传媒mv一二三区别在哪里看| 中文字幕在线熟女人妻| 短篇肉r车多肉r文| 国产激情视频免费在线观看| 久久97精品久久久久久久不卡| 少妇精品偷拍高潮少妇小说 | 日韩欧美亚洲综合久久影院| 亚洲精品久久久久久中文传媒 | 尤物九九久久国产精品的特点| 免费黄色av网站| 免费观看真人视频直播7777| 日本久久一级网站一欧美精品| 久久久久久国产精品高清| 午夜人妻久久久久久久久| 久久成人人人人精品欧| 久久久99无码一区| 青青青爽视频在线观看| 搞美女的视频网站免费看| 亚洲中文字幕人成乱在线| 怡春院熟女精品少妇aⅴ久久| 1000部丰满熟女富婆| 日韩欧美高清在线观看| 人人妻人人澡人人爽欧美一区| 18禁黄久久久aaa片| 在线播放av网站| 精品婷婷乱码久久久久久| 女女女女女裸体开bbb| 成人含羞草一区二区三区| 野花成人免费视频| 亚洲精品乱码久久久久久日本| 风流少妇一区二区三区91| 久久免费一区二区三区国产| 国产色婷婷亚洲99精品小说| 久久这里只精品国产免费99| 久久久www成人免费看片| 熟女国产精品一区二区三| 久久久www成人免费看片| 成人做爰a片免费看网站网豆传媒| 伊人久久精品亚洲午夜| 亚洲国产欧美一区二区三区丁香婷| 99国产精品免费播放| 国产91精品一区二区麻豆观看| 亚洲熟妇无码一区二区三区| 东京热一本大交乱HD| 一区二区福利视频| 99久久人妻精品免费二区| 亚洲精品美女久久久久9999| 手机+在线+精品| 农村末发育av片一区二区| 丰满+迅雷+中文字幕| 一区二区日韩视频| 亚洲精品在线观看丝袜制服| 中文字幕在线视频免费视频| 日韩精品一区二区在线观看网址| av中文字幕在线免费观看| 国产毛a片啊久久久久久保和丸| 国产+闺蜜+磁力链接| 中国美女毛片视频免费看| 午夜小视频免费观看| 亚洲AV永久无码精品成人| 色狠狠一区二区三区熟女p| 国产免费拔擦拔擦8x高清在线人| 色欧美福利视频看看午夜| 伊人久久大香线蕉综合色狠狠| 亚αv无码久久久久久不卡网站| 亚洲色婷婷婷婷五月基地| 亚洲精品456在线观看第一页| 在线免费观看尤物色视频网站| 福利丝袜视频一区二区三区| 国产乱国产乱老熟| 中文字幕乱码一区av久久不卡| 特级精品一α级毛片视频| 亚洲人成网址在线播放 | 日韩欧美一级片一区二区| 99精品全国免费观看视频| 精品久久久噜噜噜久久| 亚洲中文字幕人成影院| 躁老太老太骚BBXXHD| 国产+在线+超碰| 亚洲成在人网站av天堂| 天天色香色欲影视| 我要看欧美一级黄色录像| 又色又爽又黄又无遮挡的网站| 偷拍国精产品久拍自产| 最近最新中文字幕大全免费6| 蜜桃人妻无码AV天堂二区| 色噜噜日韩精品欧美一区二区| 国产三级在线三级久操欧美| 7777影视大全免费追剧小别离 | 在线观看一区二区国产欧美| 六夫共妻高H喷汁呻吟NP| 国产亚洲精品a久久77777| 国产精品一区二区三区肉骚| 日本欧美亚洲中文在线观看| 69久久夜色精品国产69蝌蚪网| 国产丰满麻豆vⅰde0sex| 无码综合天天久久综合网| 无码专区狠狠躁天天躁| 午夜成午夜成年片在线观看| 成人国产精品日本在线观看| 97这里有精品久久97| 爽爽爽a男女免费观看一区二区| 亚洲高清www色好看美女| 国产+免费+视频| 中文在线高清字幕电视剧大全| 亚洲国产美女精品久久久久∴| 国产精品青草久久福利不卡 | 国产又黄又爽又色的免费视频| 国产美女永久免费无遮挡| 99久久精品无免国产免费| 人人澡人人澡人人看添| 熟女老阿V8888AV| 久久一本加勒比波多野结衣| 国产91精品久久免費資訊| 999在线免费观看精品视频| 4399午夜理伦免费播放大全| 五月丁香久久丫婷婷一区不卡| 88av在线播放| 国产的av在线免费观看| 国产乱人伦偷精品视频下| 欧美成人看片一区二区尤物| 0855午夜福利| 国产一级片免费观看| 超碰国产精品久久国产精品99| 亚洲综合五月天婷婷丁香| 欧美一级黃色A片免费看蜜桃熟了| 97久久精品国产一区二区三区| 蜜桃又黄又粗又爽av免| 97国产爽爽爽久久久| 国产免费观看高清电视剧在线观看| 欧美专区日韩视频人妻| 精品无码成人久久久久久| 中国女人做爰A片| 中文字幕丰满人伦在线| 自拍偷拍亚洲色图日韩欧美| 亚洲暴力色三八AV综合网| 久久综合88中文字幕| 蜜臀av在线播放一区二区三区| 国产精品99久久久久久久vr| KTV女技师啪啪无套内谢| aaa一级黄色片| 黑茎大战欧美白妞高潮喷白欤| 日本成年x片免费观看| 日韩三级成人av在线网| 国产区欧美区日韩区| 日本熟妇japanese丰满| 久久久91精品国产一区二区三区 | 真实国产精品视频400部| 日产精品一二三四区国产| 超级黄18禁色惰网站| 91激情视频在线| 日韩欧美精品一区在线观看| 久久夜色撩人精品国产小说| 日韩黄a三级三级三级看三级少妇 欧美人妻456aⅴ中文字幕 | 亚洲第一视频在线播放| 九九在线视频这里只有精品| 日产精品一二三四区国产| 国产又黄又猛又粗又爽的a片动漫| 妙龄女被老汉压身小说作者其他小说| 天堂在线一区二区| 欧美熟女五十路视频一区| 亚洲国产成人综合精品| 日韩国产精品视频| 国语干离异富婆的骚B| 免费观看av网址| 可以看国产精品视频的网站| 老伦熟女一区二区三区红豆| 欧美日韩在线播放三区四区| 91精品成人免费国产片| 99久久婷婷国产综合精品草原| 日韩精品一区二区Av在线| 成人黄色在线观看| 色拍自拍亚洲综合图区| 久久青青草原国产毛片夜夜亚洲| 麻豆精品久久久久久久99蜜桃| 国产免费观看高清电视剧在线观看| 成人精品一区二区户外勾搭野战 | 国产女爽123视频.cno| 久久久麻豆一区二区三区四区| 在线观看视频中文字幕| 亚洲情侣偷拍激情在线播放| 日韩亚洲av人人夜夜澡人人爽| 国产欧美日韩一区二区三区66| 亚洲欧美日韩综合久久久久久| 国产亲子乱弄免费视频| 俺去啦俺来也五月天| 免费在线播放av| 国自产拍偷拍精品| 国产精品96久久久久久| 在线观看一区二区国产欧美| 蜜桃人妻无码AV天堂二区| 国产激情99精品久久一区二区 | 熟妇大肉唇BB肥| 摸进她内裤里疯狂揉她的桃子视频 | 好爽…又高潮了毛片| 欧美一区二区三区亚洲国产精品| 少妇无码av无码去区钱| 日本一卡二卡视频| 在线亚洲专区高清中文字幕| 久久精品99久久精品香蕉网| 日本免费一区二区三区中文字幕| 亚洲欧洲日产国码无码av专区| 97在线视频观看| 手机看片福利永久国产香蕉| 日本在线观看免费| 亚洲成高清a人片在线观看| 加勒比色综合久久久久久久久 | 国产欧美精品一区二区三区三 | 丁香啪啪综合成人亚洲小说| 乱码一区二区三区| 麻豆黑色丝袜jk制服福利网站| 国产免费黄色小视频| 2018av无码视频在线播放| 国产精品精品久久久久久一| 欧美在线视频免费观看综合一区| 国产2021精品视频免费播放| 国产国拍精品av在线观看| 欧美不卡一卡二卡三卡| 国产欧美日韩一区二区三区搜索 | 日韩一区二区三区视频| 中文字幕人成乱码熟人免费69| 免费乱理伦片奇优影院| 丰满人妻熟妇乱又伦精品劲| 亚洲Av日韩精品久久久久| 中文字幕一区二区三区四区视频| 三级慰安女妇威狂放播| 日韩亚洲国产中文字幕欧美| 亚洲综合激情五月色一区| 日韩高清av免费在线观看| 色噜噜人妻丝袜av先锋影音先| 亚洲乱码在线卡一卡二卡新区豆瓣| www.delisava.com| 在线+免费+国产| 《金莲淫史》全黄| 国产精品理论片在线播放| 日本道免费精品一区二区| 国产福利视频一区| 欧美精品国产制服丝袜第一页| 国产+免费+视频| 国产+欧美+欧洲| 免费男女羞羞的视频网站+192.168.0.1 | 香蕉视频在线免费看| 无码+调教+西瓜影音| 亚洲精品永久免费精品网| 大桥未久+高清无码| 亚洲欧美日韩人成在线播放| vvvv99日韩精品亚洲| 少妇人妻偷人精品视频免费| 欧美+国产+综合| 丰满的女人一区二区三区| 激情久久av区二区av| 成年人视频免费在线观看| 欧美v欧美v视频在线观看视频| 黄网站色视频免费观看美女| 人妻av天堂一区二区三区| 欧美成人精品高清在线观看 | 日韩人妻少妇一区二区| 国产精品高潮呻吟久久久久久| 99在线精品视频| 26uuu久久噜噜噜噜| 国产+午夜福利+久久精品| gogogo日本免费观看电视剧第17集| 中文欧美日韩久久| bt在线www天堂网在线| 初撮丰满五十人妻| 国产+群p+在线观看| 高清日韩精品一在线观看视频 | 国产精品扒开腿做爽爽| 无码+会员+动漫| 欧美日韩亚洲成人| 国产+日本+高潮| 99热九九热精品在这里做| 伊人久久大香线蕉综合影院首页| 天天综合亚洲综合网天天αⅴ| 亚洲热久久国产经典视频| 亚洲精品无码久久不卡| 国产老熟女高潮毛片a片仙踪林| 韩国一级精品毛片| 亚洲欧美一区二区三区四区五区| 欧美在线高清视频| 媚药侵犯调教放荡在线观看| 大家可以在这里国产一级淫片a视频免费观看 | 丰满少妇高潮久久三区| 一区二区日韩视频| 天堂一区二区mv在线观看| 日韩午夜激情视频| 欧美精品v国产精品v日韩精品| 久久九九视频观看97香蕉国产| а√天堂资源8在线官网在线| 国产又黄无遮挡在线观看| 成人嫩草97A片| 亚洲一区二区久久久| 91探花足浴店少妇在线| 午夜精品一区二区三区免费| 无码+四十路+番号| 慈禧一级淫片免费放特级| 久久久久久老熟女国产999| 亚洲成l人在线观看线路| 91看片淫黄大片一级在线观看| 妺妺窝人体色777777小馒头| 久久久久人妻一区精品果冻| 国产乱妇乱子在线播放视频| 一区二区激情av| 欧美国产又粗又长又爽视频| 国产精品一二三区在线观看| 中文在线8资源库| 99久久人妻精品免费二区 | 主播亚洲韩国一区二区黄片| 精品人妻码一区二区三区| 一边吃奶一边舔p好爽视频观看| 国产+高潮+免费| 强开小嫩苞一区二区三区网站| 精品国产一区二区三区免费| 日日操日日射日日摸欧美| 精品国产乱码久久久久久蜜柚 | 加勒比色综合久久久久久久久 | 色综合图区av网站| 日韩午夜激情视频| 女人爽到喷水的视频免费看| 国产精品毛片久久久久久明星 | 精品久久久久久无码中文野结衣| 国产精品成人一区二区三区| 亚洲+欧洲+日韩在线| v8888AV偷拍夫妻| 日韩欧美一区视频| 91久久国产综合精品女同国语 | 711公侵犯美丽人妻| 欧美中文字幕一区二区三区乱码 | 国产真实强被迫伦姧女在线观看 | 精品人妻久久久久久888| 中文字幕欧美日韩va免费视频| 日韩精品福利片毛片在在线看的| 欧美一级视频在线观看三级| 成版人看片app私人影院| 三级片免费AV在线| 97久久精品人人做人人爽| 精品+无码+白浆| 99久久有精品国产婷婷外女| 国产成人精品亚洲精品| 国产+激情+在线观看| 天天爽夜夜爽人人爽qc| 日韩高清特级特黄毛片| 国产高清av免费在线观看 | 人妻少妇精品视频一区二区三区| 亚洲乱码国产乱码精品精不卡| 国产成人精品亚洲午夜| 朝鲜女人大白屁股ass| 午夜免费福利在线| 国产手机av片在线观看| 国产在线无遮挡免费观看| 国产亚洲精品久久久999| 国产精品一区二区人人爽| 国产男女视频在线免费观看| 真人少妇高潮久久免费毛片| 国产成人精品久久久| 牛牛在线免费视频| 狼伊人一级免费毛片| 亚洲一卡久久4卡5卡6卡7卡| 五月激情婷婷综合| 久久久久久亚洲精品专区| 成人精品综合免费视频| 亚洲va久久久噜噜噜熟女软件| 亚洲精品乱码久久久久久花季| 亚洲国产精华液网站w| 麻豆日产精品卡2卡3卡4卡5卡| 亚洲av片一区二区三区久久| 欧美一区二区影院| 日本在线免费播放| 亚洲国产精品成人综合色区| 99久久99久久精品国产片| 最近在线更新8中文字幕免费| 日本少妇中文一区在线激情| 国产精品久久久久久久成人av | 国产高清吃奶成免费视频网站 | 中文字幕人妻丝袜成熟九色| 国产色乱码一区二区三区| 亚洲AV无码片一区二区三区| 国产精品久久麻豆一区二区三区| 91一区二区国产精华液| 久久综合精品亚洲| 亚洲无线一二三四区手机| 欧美久久国产精品| 欧美成人aaaaaaaa免费| 不卡视频一区二区三区| 久久久成人精品av四区| 精品一区二区三区国产| 色偷偷中文字幕久久综合| 国产精品久久久久蜜芽| 久久久精品一区二区三区| 久久久久亚洲AV无码专不卡 | 国产精品妇女久久久久久| 色色色色色五月丁香婷婷| 国产精品99久久最新视频| 色噜噜www亚洲男人天堂| 日本免费无遮挡毛片的意义 | 久久精品国产亚洲av成人文字 | 日本欧美一区视频在线观看| AV无码无在线观看免费| 日韩欧美亚洲精品高清国产| 久久精品aaaaaa羞羞羞| 衣服被扒开强摸双乳18禁网站| 国产大片黄在线观看| 国产传媒中文字幕在线观看| www.久久美女视频网| 无码av无码一区二区桃花岛| 欧美国产日韩亚洲中文| 日韩黄a三级三级三级看三级少妇| 亚洲精品少妇影院| 亚洲欧美一级久久精品国产特黄| 菠萝蜜影院免费播放电视剧软件| 国产精品久久久久av一区| 综合激情久久综合激情| 久久久久国产aa一区二区三区| 久久亚洲精品成人无码网站| 欧美+日本+亚洲| 午夜成人精品福利网站在线观看| 欧美久久成人一区999| 精品国产福利视频在线观看| 久久中文字幕一区二区三区| 十八禁在线观看视频播放免费| 一道本av免费不卡播放| www欧美国产丝袜一区二区| 国产精品揄拍一区二区久久国内亚洲精| 欧美黑人喷潮水xxxx| 亚洲色欲久久久久综合网| av天堂中av世界中文在线播放 | 玩两个丰满老熟女久久网 | 国产精品18久久久久久麻辣| ww污污污网站在线看com| 18禁黄网站禁片免费观看女女| 久久99国产综合精品| 久久久精品一区二区三区| 97久久精品亚洲中文字幕无码| 国产美女视频一区二区三区| 狠狠色狠狠色综合日日小说| 天天爽夜夜爽精品视频婷婷| 欧美成a人片在线观看久| 精品+国产+传媒| 中文字幕无线码免费人妻| 久久精品一区二区三区四区毛片| 亚洲国产精品尤物yw在线观看| 亚洲成色777777女色窝| 痉挛高潮喷水av无码免费| 制服丝袜在线视频| 99久久精品国产波多野结衣| 亚洲а∨天堂久久精品9966| 国产女同一区二区三区久久 | 东京热特级变态被虐sm| 欧美日韩国产免费观看一区二区| 日本最新免费二区三区| 苍井空亚洲精品AA片在线播放| 18禁止的网站黄污污| 破了亲妺妺的处免费视频国产| 亚洲国产av午夜精品一区| 亚洲精品久久久久中文字幕一福利| 亚洲Av无码一区二区三区天堂 | 无遮挡国产高潮视频免费观看 | 亚洲熟女少妇精品| 亚洲日本乱码一区二区三区| 污黄啪啪网18以下勿进免费的| 国产一级免费观看| 国产成人精品网站| 久久精品国产一区二区| 秋霞特色aa大片| 国产精品午夜成人免费观看| 日本五十肥熟交尾| 国精品产品区三区| 4399午夜理伦免费播放大全 | 国产亚洲网曝欧美台湾丝袜| 搡老岳熟女国产熟妇| 93人妻人人做人碰人人爽| 日本理论片免费观看在线视频| 欧美又大又黄又粗高潮免费| 日韩一区二区三区国产| 制服丝袜在线视频| 亚洲乱码国产乱码精品精不卡| 久久精品中文字幕一区二区三区| 欧美亚洲国产日韩一区二区| 在线观看+www| 国产一级婬片A片免费无成人黑豆| 巜按摩泄欲中文字幕| 久久国产精品免费久久久| 懂色av色吟av夜夜嗨| 日韩午夜一区二区在线精品三级伦理 | 人妻懂色av粉嫩av浪潮av八戒| 国产一区二区三区免费观看在线| 国产黄片视频主播在线观看| 国产成人精品综合| 热久久国产欧美一区二区精品| 国产视频手机在线观看| 国产精品99一区二区三区| 中文字幕网视频一区在线观看 | 9299yy看片婬黄大片软件| 99久久99久久精品免费看蜜桃| 国产视频xxxx| 日韩av手机在线| 手机在线一区二区三区| 99与久久国产精品视频| 熟妇人妻无乱码中文字幕真矢织江| 亚洲成av人片在线观看天堂无 | 日韩欧美一区二区在线| 欧美三级在线播放| 亚洲综合激情国产一区| poronovideos黑人极品| 妺妺窝色77777777野| 国产91高潮流白浆在线麻豆| 久久人午夜亚洲精品无码区| 色婷婷五月综合亚洲小说 | 欧美国产又粗又长又爽视频| 在线观看人成视频网站不卡| 最近最新中文字幕大全免费6| 手机无码人妻一区二区三区免费 | 欧美亚洲国产另类第一页| 宅女午夜福利免费视频| 成人做爰A片免费看网站草莓| 日日躁你夜夜躁你av蜜| 日韩欧美视频一区| 免费观看黄色一级片| 日韩精品中文字幕久久臀| 亚洲欧美日韩国产综合一区二区 | 国产农村乱人伦精品视频| 一区二区三区欧美视频| 亚洲中文字幕乱码av波多ji| 最近中文字幕在线视频8| 麻豆天天躁天天揉揉av| 四个熟妇搡BBBB搡BBBB| 久久亚洲精品人成综合网| 日本不卡在线播放| 国产在线激情小视频国产馆| 亚洲人成综合网站7777香蕉| 18+成人在线观看| 亚洲美女视频网站| 四川少妇搡BBB搡BBB搡多人伦| 亚洲欧美日韩在线不卡| 一级片在线免费观看| 欧美精品亚洲精品日韩在线观看 | 日韩欧美成人精品一区二区三区 | 久久亚洲精品无码观看不| 一人玩两女双飞视频| 国产在线激情小视频国产馆| 一本丁香综合久久久久不卡网站 | 精品一区二区国产免费av| 久久天天躁夜夜躁狠狠躁综合| 日本无码一区二区三区| 国产成人精品午夜福利软件| 青草视频在线观看视频| 国产美女精品中文网蜜芽宝贝| 少妇大胆瓣开下部自慰| 亚洲一卡久久4卡5卡6卡7卡| 国产一级中文字幕在线观看| 亚洲国产精品成人综合色区| 免费精品中文字幕在线观看| 亚洲欧洲精品成人久久av18| 欧美日韩一区三区| 亚洲精品永久免费精品网| 天堂а√在线地址中文资源| 自拍视频国产三级| www.91自拍| 四虎永久在线精品免费网站| 在线视频免费观看一区| 人人澡人人澡人人看添| 中文字幕av久久爽一区| 国产无遮挡裸体免费视频| 偷窥+国产+综合| 人人妻人人澡人人爽欧美一区| 国产亚洲papapa| 成人无码精品1区2区3区免费看| 天堂在线www天堂在线| 18+成人在线观看| 天堂网www在线最新版资源 | 大地影视中文资源3| 中文字幕亚洲图片| 国产精品永久免费视频| 国产精品人八做人人女人a级刘| 麻豆日产精品卡2卡3卡4卡5卡| 日韩三级片在线播放| 奇米影视亚洲春色| 久久久综合久久久| 成人动漫在线观看免费| 一本大道精品视频在线| 精品久久国产字幕高潮| 天天看国91产在线精品福利桃色| 国产精品免费看久久久久久| 午夜福利精品kkk在线| 粉嫩99精品99久久久久久桃色 | 老色鬼久久亚洲av综合1| 国产乱码一区二区三区免费| 国产女爽爽爽爽精品视频| 国产精品一二三在线| 国产+传媒+麻豆| 国产成人精品1沈娜娜| 白丝在线看片av| 在线观看av网站永久免费观看| 欧美日韩一区二区三区自拍| 欧美视频在线观看完整版中文| 欧美黑人一级爽快片淫片高清 | 饥渴难耐的人妻一区二区三区 | 亚洲视频在线播放一区二区三区| 国产羞羞的视频在线免费观看| 国产无人区码一码二码三mba| 国产一区二区三区撒尿在线| 久久久久人妻精品一区蜜桃 | 91porny首页入口| 37p粉嫩大胆色噜噜噜| 亚洲婷婷五月综合狠狠app| 国产麻豆成人传媒免费观看| 欧美+日韩精品+另类图片| 夜色毛片永久免费| 亚洲制服丝袜一区二区三区| 老牛影院在线观看免费下载电视剧| 2018年亚洲欧美在线视频| 国产精品久久久久久久竹霞| 久久99国产精一区二区三区| 真人床震高潮全部视频免费| 无码人妻一区二区三区免费n鬼逝 av岬奈奈美一区二区三区 | 亚洲а∨天堂久久精品喷水| 自拍偷拍亚洲色图日韩欧美| 免费人成在线观看网站免费观看 | 午夜视频在线观看一区| 国产熟女一区二区三区视频蜜月| 18禁国产精品久久久久久网站| 欧美日韩综合精品无人区| 好看的中文字幕av| 久久婷婷五月综合色精品| 老司机成人精品视频在线观看| 午夜免费无码福利视频| 国产精品国产三级在线...| 欧美精品99久久久久久人| 国产+亚洲+制服| 日韩精品亚洲aⅴ在线影院 | 极品少妇被啪到呻吟喷水| 日韩欧美在线精品| 真实国产乱子伦一区二区三区| 国产黄色在线网站| 国产偷抇久久精品a片69| 雯雯的肉奴生活1—48| 国产黄色在线网站| 少妇无码av无码专区线y| 国产精品美女久久久av软件| 久久久青草青青亚洲国产免观| 人妻无码一区二区不卡无码av| 欧美精品久久一区二区| 九九影院在线观看免费最新电视剧| 亚洲高清视频一区二区三区| 久久久久xxxx| 亚洲中文字幕人成乱在线| 天天爽夜夜爽一区二区三区 | 成人国产av一区二区三区| 高清欧美精品xxxxx在线看| 成人做爰A片免费看黄冈白狐影院| 国产精品成人久久久久| 国产高清精品福利私拍国产写真| 亚洲视频欧美视频中文字幕 | 在线观看视频中文字幕| 亚洲精品国产A久久久久久| 一本色道婷婷久久欧美| 少妇久久久久久久| 久草在线免费福利| 欧美+超清+无码| 美女动态视频久久久久久久久久| √资源天堂中文在线| [无码破解]AV破解版| 美丽人妻被按摩中出中文字幕| 国产精品成人免费视频网站 | 成人a大片在线观看| 玩两个丰满老熟女久久网| www.黄片.com| 中文精品字幕人妻熟女| 变态另类天上人间| 一本加勒比hezyo爆乳| 欧美日韩成人在线免费观看| 论坛+视频+无码| 91精品欧美一区综合在线观看| 6090新视觉理论电视剧4410yy | 四川乱子伦农村露脸| 亚洲福利视频在线| 天堂资源wwwav啪啪| 丰腴饱满的极品熟妇| 成人+国产+欧美| 婷婷在线视频观看| 无码人妻精品一区二区三| 美女网站免费久久久久久久| 毛片国产精品完整版| 亚洲精品在线兔费观看视频| 小泽玛利亚AⅤ成人片| 辜莞允+无码+视频下载| www久久精品亚洲国产| 香蕉视频精品官网在线观看| 调教驯服丰满美艳麻麻在线视频| 亚洲第一成年免费网站| 99久久人妻网站噜噜噜| 欧美乱子伦一区二区三区| 日韩精品一区二区免费视频| 无码夜色一区二区三区| 国产国拍亚洲精品永久软件| YY4480青苹果乐园免费播放电视剧| 麻豆ā片免费观看在线看| 韩国三级欧美三级国产三级| 免费国产一级特黄久久| 国产成人亚洲精品另类动态图| 欧美日韩视频免费观看| 朝鲜女人大白屁股ass| 国产精品久久久久久亚洲a| 爽交换快高h中文字幕| 91精品久久久蜜桃网站| 国产欧美日韩丝袜在线视频| 少妇太爽了在线观看视频| 中文毛片无遮挡高清免费| 99热在线精品免费全部my| 欧美乱码熟妇色精精品| 韩国主播av福利一区二区| 久久久久国色av∨免费看| 久久最新免费视频| 狠狠色噜噜狼狼狼色综合久| 欧美+国产+制服| 人摸人人人澡人人超碰手机版| 高清无码成人视频| 中国美女毛片视频免费看| 四虎影视1515hhc0m| 国产伦理久久精品久久久久| 亚洲精品无amm毛片| 亚洲色图欧美视频另类视频| 在线观看国产视频| 亚洲欧美另类激情| 久久精品亚洲天堂| 一区二区三区日韩欧美| 97se亚洲精品一区二区| 日本+国产+在线观看| 国产精品一区二区色综合| 强奷乱码中文字幕熟女导航| 99国产精品国产精品精品| 亚洲高清在线视频| 国产美女av在线| 久久婷婷五月综合色和啪| 狠狠精品久久久无码中文字幕| 久久99精品国产麻豆| AV剧情麻豆映画国产在线观看| 日韩不卡高清视频| 欧美区亚洲区国产区一区二区| 国产成人精品一区二区| 色视频高清精品一区二区| 国产又黄又粗又硬的视频| 日韩人妻无码精品无码中文字幕 | 中文字幕视频在线欧美一区| 娇妻被黑人伦轩1~14| 亚洲色图欧美另类中文字幕| 午夜乱码爽中文一区二区| 经典三级+少女潘金莲| 欧美大片一区二区三区视频 | 无码+自拍+磁力链接| 国产精品一级片久久久久| 99久久综合伊人东京热| jizz国产免费| 国产又黄无遮挡在线观看| 九一麻豆成人精品国产免费| 亚洲三区在线观看内射后入| 国产精品久久久久aaaa| 婷婷五月深深久久精品| 成人18+免费观看视频| 黑蝴蝶第一AV导航| 亚洲乱码国产乱码精品精的特点 | 欧美+日产+专区| 久久久久人妻精品一区蜜桃| 日本老熟妇乱子伦精品| av在线免费网站| 国产一级特黄毛片在线毛片| 亚洲欧美在线视频观看| 3344国产永久在线观看视频| 国产午夜av在线一区二区三区| 天天爽夜夜爽精品视频婷婷 | 香蕉视频在线免费看| 国产91高潮流白浆在线麻豆 | 97成人做爰a片无遮挡直播| 国产熟女高潮精品视频区| 国产微拍精品一区| 中文亚洲无线码49vv| 90岁老太婆乱淫| 亚洲精品久久久久中文字幕| 污污视频网站在线免费观看| 国产+日产+欧美在线观看| 一本大道HEYZO乱码专区在破解| 久久综合精品视频| 中文乱码字幕视频观看网站免费| 国产午夜福利在线观看红一片| 成人一区二区三区视频xxx| 日本真人做爰a片| 国内外免费激情视频| 国产愉拍自拍中文在线| 中文字幕日产乱码国内自| 国产欧美日韩美女精品一区| 国产+很黄+视频| 久久人人97超碰国产精品| 人妻精品国产一区二区| 国产av一区二区二区三区| 中文欧美日韩久久| 成人在线观看一区| 国产欧美成aⅴ人高清| 夜夜狂射影院欧美极品| 精品久久久久久久久免费视频| 久久婷婷国产91天堂综合精品| 操老女人一区二区三区视频tv| 能免费在线观看av的网站| 日韩亚洲国产中文永久| 久久久亚洲av男人的天堂| 国产的av在线免费观看| 欧美日韩一区二区免费视频| 日韩黄色一级网站| 欧美国产精品国产三级国产AⅤ下载 | 欧美一级特黄特色大片免费观看| 视频在线一区二区| 麻豆日产精品卡2卡3卡4卡5卡| 成全影视免费观看| 国产美女极度色诱视频www| 亚洲欧美另类激情| 鲁大师大地影院免费观看视频| 国产成人av亚洲一区二区| 中文字幕亚洲图片| 深夜国产福利小视频在线观看 | 中文字幕av网页观看日韩| 久久九九51精品国产免费看| 国产精品破处一区二区三区| 激情午夜福利在线视频观看| 淫色一非一区二区朝鲜| 26uuu精品一区二区| aⅴ网站在线观看| 人人超碰91尤物精品国产| 亚洲欧美日韩国产综合一区二区| 中文字幕av一区二区三区ay| 一卡二卡三卡在线视频 | 丰满少妇被猛烈进入中文字幕| 精品人伦一区二区三区蜜桃网站| sao货妓女的yin荡生活| aaa级精品久久久国产片| 青青狠狠噜天天噜日日噜| 国产精品毛片一区二区| 真实粗暴交videos尖叫| 亚洲国产综合一区二区精品| 爽爽爽爽成年网站在线观看| 麻豆国产成人av高清在线观看 | 精品乱码一区二区三区四区| 日韩人妻无码免费视频一二区| 精品久久国产字幕高潮一| 久久久久久久久久久91| 亚洲中文字幕无码永久免弗| 亚洲人成网站18禁止中文字幕| 国产成人成爽一区二区 | 国产精品亚洲欧美中文字幕| 久久精品国产亚洲精品| 日韩激情免费视频一区二区| 中文毛片无遮挡高清免费| 日韩精品一区二区三区在线观看视频网站| 国产一区二区三区在线观看网站 | 2022色婷婷综合久久久| 久久99精品国产麻豆| 日韩精品无码一区二区三区久久久| 99精品久久久久久琪琪| 999国产精品视频| av在线播放日韩亚洲欧| 综合久久综合久久| 免费+网站+国产| 日韩精品久久久久久久的张开腿让| 日本视频在线免费| 欧美老妇胖老太xxxxx| 亚洲国产欧美一区二区三区一| 国语自产拍无码精品视频| 亚洲国产日韩a在线乱码| 中文字幕+亚洲一区二区三区| 亚洲成在人线av品善网好看| 亚洲+视频+免费| 国产+午夜福利+精品一区| 山东乱子伦视频国产| 国语干离异富婆的骚B| 国产精品久久久久久久久潘金莲| 少妇人妻精品无码专区视频| 三年在线观看中文免费观看| 国产成人A∨在线观看不卡| 中文字幕一区二区三区夫目前犯| 欧美+国产+极品| 国产精品剧情在线中文字幕| 久久免费观看视频| av天堂东京热无码专区| gogogo高清在线播放免费观看如果奔跑是湘 | 国产+高潮+精品| 又粗又猛又爽又黄的视频| 丰满人妻av无码一区二区三区| 亚洲人成人网色www| 国产日韩欧美一区在线播放| 91在线精品入口| 秋霞伦理电院网伦霞| 爆乳喷奶水无码正在播放| 成人资源在线观看| 久久人妻无码aⅴ毛片a片动图| 多乙亚洲国产中文综合| 中文字幕av手机版| 国产真实自在自线免费精品| 成人伊人青草久久综合网| 中美日韩精品在线免费观看| 欧美香蕉爽爽人人爽| 真人女处被破69x176cc| 亚洲欧洲免费黄色视频| 全免费a级毛片免费看视频| 午夜福利影院私人爽| 91麻豆精产国品一二三产品测评| 安徽少妇BBB凸凸凸BBB| 天海翼torrent+下载| 欧美成人精品一区二区三区在线观看 | 久久久久午夜免费福利视频| 精品国产乱码久久久久| 怡春院国产精品视频| 色综合久久88色综合天天人守婷| 91日韩精品久久久久身材苗条| 精精国产欧美一区二区三区| 无码中字视频网址大全| 国产+欧美+日本在线观看| 大地资源二中文官网| 最新版天堂中文在线| 一本大道久久a久久综合婷婷| 丰满成熟熟妇乱又伦精品| 9·1免费观看完整版高清下载| 国产无套抽出白浆来| 国产精品久久久夜夜高潮夜夜爽| 37p粉嫩大胆色噜噜噜| 精品丝袜国产自在线拍小草| 野花社区视频在线观看| 国产精品三级一区二区| 国产精品视频全国免费观看| 99国内视频免费在线观看| 美女制服丝袜国产精品网站| 日韩人妻无码精品专区906188| 久久久国产免费美女视频| 熟妇精品一区二区三区四区| 在线aⅴ亚洲中文字幕| 亚洲美女视频网站| 麻豆精品国产专区在线观看| 日韩v亚洲v欧美v精品综合| 99久久免费只有精品国产| 国产午夜亚洲精品羞羞网站| 美女视频图片久久黄网站| brazzers精品成人一区| 人妻中文在线一区二区三区| 国产综合在线观看免费视频| 噼哩噼哩国语免费播放| 1024精品久久久久亚洲| 九九久久精品免费观看| 国产精品自在拍首页视频8| 中文天堂在线资源www| 亚洲七七久久精品中文国产| 国产精品国产自线拍免费软件| 亚洲精品国产专区91在线| 欧美v国产在线一区二区三区| 韩国和日本免费不卡在线v| 亚洲国产精品一区二区999| 免费观看美女裸体网站| 91av福利视频| 一卡二卡三卡在线视频| 国产伦久视频免费观看| 国产精品久久久久久亚洲影视公司| 在线视频欧美亚洲| 精品美女一区二区| 亚洲综合免费视频| 日本入室强伦轩人妻HD| 亚洲av成熟国产一区二区三区| 屁屁国产第一页草草影院| 亚洲国产精品婷婷| 国产91精品久久久久91痣美人| 中文字幕人成乱码熟人免费69| 最近中文字幕免费观看视频| 国产精品伦视频看免费三| 91精品啪在线观看国产81旧版| 久久伊人色av天堂九九| 一区二区三区日韩中文字幕欧美 | 日日躁你夜夜躁你av蜜| 老牛影院在线观看免费下载电视剧 | 人妻少妇无码精品专区| 黑色丝袜国产精品| 乖灬舒服灬别拔出来灬男男| 成人精品视频中文字幕版| 亚洲码欧美码一区二区三区| 精品国产大片久久久久久久久| 成人国产免费视频| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解| 中文字幕亚洲乱码1区2区| 制服丝袜诱惑在线观看一二区| 久久精品国产—精品国产| 国产黄色一区二区| 日韩欧美亚洲精品高清国产| 中国一级一区二区三区黄色视频| 黄色一级片免费播放| 欧美日韩在线精品一区二区a| 最近在线更新8中文字幕免费| 污18禁污色黄网站免费观看| 国产少女免费观看电视剧| 又色又爽又黄还免费视频 | 久久半精品国产99精品国产| 日韩人妻不卡一区二区三区| 国产剧情v888av| 大地资源二中文在线官网| 久久青青草原国产毛片夜夜亚洲 | 国产精品麻豆入口29| 18+在线观看网站| 人妻少妇精品中文字幕AV| 欧美另类一区二区| 青草久久久国产线免观| 一人玩两女双飞视频| 熟妇全身大保健(对白)| 亚洲精品无码av专区最新| 超碰中文字幕在线| 五月婷婷丁香久久| 久久亚洲精品无码gv| 久久99热这里只有精品国产| 欧美日韩国产动漫在线| 日日噜噜夜夜狠狠视频免费bd | av一区二区无人区在线观看| 国产美女的第一次好痛在线看| 亚洲+国产+激情| av免费在线观看一区不卡| 一级二级三级毛片| 精品精品精品国产自| 国产精品毛片在线完整版| 亚洲色成人中文字幕网站| 国产真实伦在线观看视频| 国产色乱码一区二区三区| av天堂午夜精品一区二区三区| 精品亚洲欧美日本在线观看| 无码+蓝衣+磁力| 黄色av网站免费观看| 久久国内精品自在自线图片| 精品97国产免费人成视频| 国产成人免费av片久久| 亚洲一区二区三区无码中文字幕| 国产成人成爽一区二区| 国产麻豆乱码精品一区二区三区| 国产日韩欧美中文另类| 亚洲国产福利一区二区三区| 精品美女一区二区| 色婷婷精品视频一区二区| 国产精品久久..4399| 中文字幕岳伦妇无码中出| 欧美牲交a欧美牲交aⅴ免费| 正在播放+日韩+无码| 国产成人精品亚洲一区二区麻豆| a亚洲va欧美va国产综合| 国产精品久久久久久久免费绯色 | 国产精品成人av在线观看春天| 国内精品国语自产拍在线观看| 亚洲专区在线91福利网| 国产亚洲午夜精品一区二区久久| 亚洲+国产+专区| 国产午夜福利久久精品| 一本大道中文日本香蕉| hitomi一区二区三区精品| 97精品免费视频| 免费男女羞羞的视频网站+192.168.0.1| 一本大道HEYZO乱码专区在破解| 成人伊人青草久久综合网| 视频在线一区二区| 又色又爽又黄的视频网站| 黑丝+国产+在线视频| 精品人妻av区乱码色片| 一区二区三区日韩欧美| 又粗又黄国产视频.com| 亚洲精品无码久久不卡| 国产精品欧美久久久久久日本一道| 久久久www成人免费精品| 美女视频黄是免费| 涩涩涩蜜桃日韩一区二区| 99久久免费精品国产免费高清| 91精品国产综合久久久蜜臀九色 | 色色色色色五月丁香婷婷| 中美日韩亚洲中文专区| 精品人妻人伦一二三久久久久| 国内精品国产成人国产三级粉色| 不卡一区二区在线视频观看 | 国产精品美女.www爽爽视频| 农村骚话淫语对白| 国内精品久久久久影视| 国产精品呻吟av久久高潮| 狠狠躁夜夜躁人人爽天天不| 国产传媒麻豆剧精品av国产| 肉大榛一进一出免费视频| 亚洲AV午夜精品无码专区| 女女百合av大片一区二区三区九县| 91亚洲高清视频在线观看| 久久婷婷国产91天堂综合精品 | 久久青青草原国产毛片夜夜亚洲| 国产精品国产自线拍免费软件 | 国产午夜精品一区理论片| 人人妻人人澡人人爽曰本| 国产一级特黄毛片| 成年美女黄网色视频免费4399| 美女在线视频黄色免费网站| 中国精品女人高潮免费视频| 99热门精品一区二区三区无码| 国产精品美女久久久久av爽| 精品中文字幕在线观看| 欧美群交射精内射颜射潮喷| 久久婷婷五月综合色99啪ak| 精品成人乱色一区二区| 自拍亚洲欧美日韩一区二区三区 | 西西GoGoGo高清在线完整版| 国精品午夜福利视频2021| 国产+人人+视频| 国产亚洲精品久久久999| 亚洲美女视频之国产精品| 国产欧美亚洲首页| 亚洲精品国男人在线视频| 黄网站色视频免费观看美女 | 亚洲+国产+视频在线| 欧美激欧美啪啪片免费看| 中文字幕一区三级久久日本| 国产曰又深又爽免费视频| 国产精品精品视频一区二区三区| 国产自产21区在线观看| 少妇做爰全过内谢| 亚洲福利视频在线| 在线视频免费观看一区| 精品人人妻人人澡人人爽牛牛| 亚洲色成人网站www永久尤物| 精品久久久噜噜噜久久| 国产+高潮+视频| 亚洲AV无码片一区二区三区| 久久久久久久久久久91| 国产高清av在线一区二区三区| 精品福利视频一区二区三区| 最新黄色在线观看一区二区三区 | 国产偷窥熟女高潮精品视频 | 日本69精品久久久久999小说| 亚洲精品一区二区国产精华液| 国产精品18久久久久久人 | 91精品久久久久久久久青青| 小夫妻高潮偷拍合集| 亚洲熟妇久久国产精品| 国产av一区二区三区天美| 国产在线无遮挡免费观看| 麻豆国产VA免费精品高清在线| 久久精品一区二区三区四区毛片| 国产美女视频免费观看的软件| 青青草原亚洲视频| 久草在视频免费福利| 国产精品久久久久久久久免小说| 中文字幕+乱码+中文字幕在线| 中文国产日韩精品av片| 国产乱淫av蜜臂片免费| av天堂东京热无码专区| 中文字字幕在线中文乱| 日本在线一区二区三区欧美| 欧美日韩国产一区二区三区播放| 超碰中文字幕在线| 免费男女羞羞的视频网站+192.168.0.1 | 亚洲精品国产中文字幕在线| 留守熟妇一X88AV| 和闺蜜野外交换做爰的注意事项| 东京热一本大交乱HD| 日本护士vivoes极品另类| 成人免费观看视频大全| 国产欧美日本亚洲精品一5区| 99久久免费精品国产72精品| 欧美日韩国产一区二区三区| 久久久国产免费美女视频| 国产精品欧美一区二区三区不卡| 国产精品鲁丝av一区二区| 国产1024成人精品视频| 亚洲老熟女av一区二区| 国产毛片乡下农村妇女bd| 欧美亚洲天堂视频在线观看| 四个人妻互换不戴套| 天天躁夜夜躁天干天干2022| 亚洲欧洲成人精品av97| 欧美一级a视频在线观看免费| 久久久欧美国产精品人妻| 亚洲婷婷天堂在线综合| 亚洲AV无码久久精品色欲| 中文欧美日韩久久| 日韩1区3区4区第一页| 在线观看+国产+免费| 久久精品欧美亚洲一区二区三区| 成人做爰黄A片色情泳衣| 欧美一级午夜福利免费区| 亚洲乱码在线卡一卡二卡新区豆瓣| 精精国产xxxx视频在线观看| 亚洲精品国产一区二区在线观看| 国产成人高清亚洲明星一区| 干淫语对白骚妇视频| 亚洲午夜国产一区99re久久| 亚洲欧美日韩视频一区二区三区| 丁香婷婷六月综合交清| 一级特黄aaaaaa大片| 成年人黄页网站免费观看| 六十路初撮り完熟在线播放| 国产精品偷伦视频免费手机播放 | 青青草国产免费国产是公开| 99久久一区二区| 欧美一区二区三区久久精品| 久久人妻少妇嫩草av| xxxxhd欧美| 欧美在线人视频在线观看| 国产吞精囗交免费视频| 免费看日产一区二区三区| 久久嫩草影院免费看| www国产国人免费观看视频| 一本大道HEYZO乱码专区在破解| 黄色网页在线观看| 亚洲精品久久久久中文字幕 | 高清国产下药迷倒白嫩| 久久久久久99国产精品| 亚洲精品国偷拍自产在线| аⅴ天堂中文在线| 亚洲成色A片77777在线小说| 成人在线观看视频网站| 动漫美女h黄动漫在线观看| 国产麻豆一精品一男同| 7799国产精品久久久久| 日本地区不卡高清更新二区| 狼伊人一级免费毛片| 日韩欧美中文字幕一区二区 | 日本欧美亚洲中文在线观看| 欧美精品黄片一区二区三区| 国产亚洲精品第一综合不卡| 国产精品免费观看调教| 亚洲区欧美日韩综合| 韩国主播av福利一区二区| 久久99热这里只有精品国产| 99国产精品中文字幕在线观看| 久久亚洲精品无码aⅴ大香| 日韩三区在线观看| asian日本若图pics| 亚洲精品在线兔费观看视频| 中文字幕久久波多野结衣av不卡| 在线观看亚洲天堂视频网站| 国产精品美女www爽爽爽爽| 亚洲综合免费视频| 久久久久久久久久国产视频| JIZZJIZZ亚洲无乱码| 一区二区三区久久久国产| 99久久婷婷国产综合精品草原| 日本+国产+在线观看| 日日噜噜夜夜狠狠视频免费bd | 国产精品成人一区二区三区| 国产福利视频一区二区三区| 国产又爽又黄又舒服的视频| 日日噜噜夜夜狠狠视频免费bd| 日本欧美亚洲中文在线观看| 欧美精品一区二区蜜臀亚洲| 天堂av2020| 最新国产av最新国产在钱| 久久中文精品无码中文字幕下载| 五月天+婷婷+亚洲色| 蜜桃精品久久久久久久免费影院 | 国产亲子乱弄免费视频| 色色色色色五月丁香婷婷| 欧美国产激情一区二区三区 | 69精品人人人人人人人人人| 亚洲综合无码av一区二区三区 | 国内大量揄拍人妻精品视频| 久久久久国产视频| 日韩东京热无码免费视频| asian日本若图pics| 成人精品gif动图一区| 国产精品原创巨作av女教师| 中学生+国产+磁力链接| 岛国精品123区无码| 国产精品免费观看久久| 色综合视频一区二区三区44| 亚洲一区二区三区国产中文| 亚洲欧洲无码一区二区三区 | 国产69精品久久久久熟女| 国产精品免费视频网站| 冢本六十路の高齢熟女| 国产精品av一区| 白浆+高潮+国产| 精品国产乱码久久久久久蜜柚| 国产尤物精品自在拍视频首页| www.亚洲最全福利视频网站| 亚洲免费视频网站| 国产免费一区二区三区视频| 精品成人乱色一区二区| 高清国产下药迷倒白嫩| 国产成本人视频在线观看| 自拍视频一区二区| 国产又粗又猛又爽又黄视频| 亚洲精品在线兔费观看视频| 无码人妻一区二区三区AV| 天堂视频入口免费在线观看 | 久久久久人妻一区二区三区VR| 偷偷要色偷偷中文无码| 国产亚洲日韩在线人成 | 亚洲欧洲精品在线| 超碰香蕉人人网99精品| 国产婷婷av片在线观看| 蜜臀国产在线观看激情网| 成人嫩草97A片| 嫩草欧美曰韩国产大片| OL超薄肉丝美脚一区二区| 窝窝午夜色视频国产精品破| 精品欧美一区二区三区久久久| 欧美日韩国产中文| 国产精品国产三级国AV麻豆| 久久久久免费看成人影片| 欧美视频在线观看| 天堂www天堂在线资源网| 亚洲综合成人av一区在线观看| 国产人免费人成免费视频| 久久精品成年人免费看国产片| 女女女女女裸体处开bbb| 日韩国产在线观看不卡免费 | 国产中年熟女高潮大集合| 人妻仑乱少妇a级毛片| 免费网站观看www在线观看| 久久精品中文字幕有码| 国产精品国产三级国产专播精品人 | 国产精品人人妻人人爽人人牛| 欧美国产日韩在线一区二区三区| 99久久免费视频在线观看| 大波美女一级a久久午夜| 成人国产精品久久久春色| 国产婷婷vvvv激情久| 亚洲精品一区二区成人| 成全视频在线观看完整动画片| 成年奭片免费观看视频天天看| 亚洲无线码在线一区观看| 日本不卡在线播放| 影音先锋+写真+日韩| 深夜福利在线播放| 色猫咪免费人成网站在线观看| 《巨乳人妻》风间由美| 日韩国产精品一区二区| 久久久久久久久人妻福利免费看| 色视频免费在线观看| 国产美女在线观看| 国产欧美福利v888av| 国产一区二区在线观看免费视频| 日韩高清特级特黄毛片| 亚洲+熟女+护士| 欧美三级少妇高潮| 国产又色又爽无遮挡免费| 国产人妻大战黑人20p| 丰满大乳奶做爰ⅹxx视频| 国产精品免费观看久久| 曰韩无线无卡tⅴ一二三区| 国产a视频精品免费观看| 国产在线观看99| 日韩v亚洲v欧美v精品综合| 伊人久久大香线蕉av最新| 青草伊人久久综在合线亚洲| A∨天堂精品视频| 久久精品久久久久久| 99热热久久这里只有精品| 久久久久波多野结衣高潮 | 日韩三级伦理片色呦呦中文字幕 | 日本豐滿熟婦BBXBBXHD| 日韩在线视频播放免费视频完整版| 欧美激情一区二区三区四区| 亚洲?V无码成人动漫无遮挡| 91这里都是精品久久久久| 影音先锋+写真+日韩| 亚洲午夜久久久久久久国产| 欧美乱码精品一区二区| 级r片内射在线视频播放| 中文字幕在线日韩| 在线观看一区二区三区少妇| 国产精品人八做人人女人a级刘| 夜鲁鲁鲁夜夜综合视频| 亚洲精品久久久久中文字幕| 2021国产成人精品久久| 久久综合亚洲色1080p| 无码区a∨视频体验区30秒| 精品国产美女av久久久久| 黄色激情视频网站| 出差+协和+中文字幕| 国产丰满麻豆vⅰde0sex| 亚洲+男人的天堂+一区二区 | 乳欲人妻1~5集动漫无删减| 北条麻妃99精品久久朝桐光| 2022一本久道久久综合狂躁| 亚洲一区二区视频在线看| 免费成人在线网站| 午夜精品一区二区三区在线播放| 亚洲日本中文字幕在线四区| 爽爽爽a男女免费观看一区二区| 国产精品18久久久久白浆软件| 一区二区三区四区亚洲| 特级西西xXWWW无码| 亚洲AV成人片无码网| 中国老熟妇在线视频| 久久婷婷国产91天堂综合精品| 中文字幕欧美高清在线观看| 亚洲欧美另类综合| 国产互换人妻5P| www.99精品| 久久91精品国产91久久蜜月| 无翼乌18禁全肉肉无遮挡彩色| 嫩草一区二区极品在线观看| 欧美精品v国产精品v日韩精品| 欧美人伦禁忌dvd放荡欲情| 精品97国产免费人成视频| 欧洲精品色在线视频看看| 篠田优人妻与黑人BD在线| 97夜夜澡人人双人人人喊| 国产精品无码v在线观看| 久久久青草婷婷精品综合日韩| 亚洲成av人片一区二区三区| 久久99国产精品尤物| 国产精品久久久久aaaa| 久久99国产综合精品免费99| 国产成人精品男人的天堂网站| 伊人久久精品无码二区麻豆| 久久av中文字幕| 桃色视频高清亚洲一区二区在线| 国产熟妇另类久久久久久| 日本国产精品亚洲专区观看| 麻豆国产一区二区三区| 天堂中文在线8最新版地址| 中文无码乱人伦中文视频播放| 日韩欧美国产一区二区三| 亚洲Av无码一区二区三区天堂| 日本精品不卡免费在线播放| 九色porny视频| 精品一区二区三区无码免费直播| 午夜福利试看120秒体验区| 99pao在线视频国产| 猫咪免费人成网站在线观看| 亚洲国产日韩a在线乱码| 日韩人妻无码精品一专区二区三区| 五月激情婷婷综合| 精品女二区三区激情免费视频| 成人午夜片免费在线观看| 懂色av色吟av夜夜嗨| 国产精品国产精品国产专区蜜臀ah| 久久精品国产99久久久| 91精品国产色综合久久不卡98| 国产精品自产拍在线观看花钱看| 久久男人高潮av女人天堂| 亚洲Av无码一区二区三区天堂| 国产毛片久久久久久久18| 日韩精品人妻无码久久影院| 奇米777四色成人影视| 欧洲美熟女乱又伦免费视频| 亚洲欧美日韩高清一区| 国内精品在线播放| 免费+国产在线观看| 99久久久久国产精品免费| 久久婷婷六月综合国产激情ai| 久久国产精品午夜福利影视 | 国产精品国产精品国产专区蜜臀ah | 少妇人妻系列无码专区视频| 日本一区二区更新不卡| 老子影院在线观看理论片| 一区精品视频在线观看免费| 亚洲美女黄色一级啪啪视频| 精品1区2区3区4区产品| 婷婷亚洲久悠悠色悠在线播放| 国产精品4huwww| 欧美日本二区三区四区人气| 99久久免费精品| 丰满人妻做爰2理伦片免费看| 9久久国产精品免费视频| 亚洲aⅴ天堂av天堂无码麻豆 | 色欲AⅤ亚洲情无码AV蜜桃| аⅴ天堂中文在线| 久久精品国产亚洲av高清色| 亚洲精品成人久久av| KTV女技师啪啪无套内谢| 亚洲视频手机在线观看| 欧美超碰精品中文字幕在线| 最新69国产成人精品视频| 自拍偷亚洲产在线观看| 色偷偷色噜噜狠狠网站30根| 亚洲va欧美va人人爽春色影视| 日韩成人大屁股内射喷水| 美国午夜福利视频一二区| 亚洲精品国男人在线视频| 国内精品自线一区二区三区| 五月天丁香在线观看| 日韩欧美中文字幕视频在线看| 国产精品美女久久久久aⅴ| 国产精品免费观看久久| 午夜成人免费影院| 亚洲精品一区三区三区在线观看| 亚洲精品一区久久久久久| 黄色av网址在线| 中文字幕av网页观看日韩| 麻豆专媒体一区二区| 无码观看AAAAAAAA片| 久久亚洲精品无码观看不| 午夜福利精品亚洲不卡| 人妻NP〈慎入〉H在线视频| 久久九九久精品国产| 96亚洲精品久久久蜜桃| 少妇人人凹凸XX凹凸爽凹凸| 丰满少妇被猛烈进入中文字幕 | 主播亚洲韩国一区二区黄片| 日韩精品+一区二区+av在线| 国产毛片久久久久久久18| 欧美精品久久久久久久久久白贞 | 777婷婷天堂综合区色吧| 伊人成人开心婷婷久久网| 九九九久久国产免费| 国产精品毛片日韩毛片视频| 老牛嫩草一区二区三区消防 | 色综合久久无码中文字幕| 欧美婷婷六月丁香综合区| 少妇p可以进入的视频网站| 韩日在线视频观看| 丰满人妻做爰2理伦片免费看| 天堂久久av无码亚洲一区小说| 羞羞影院午夜男女爽爽在线观看| 久久精品道一区二区三区| 久久精品国产亚洲av热一区| 国产九色在线播放九色| 久久久久久久久人妻福利免费看| 欧美综合在线观看视频| 亚洲日本乱码一区二区三区| 国内少妇高潮嗷嗷叫在线播放| 一级全黄裸体免费观看视频| 亚洲人成人网色www| 91精品人妻麻豆一区二区| 久久中文字幕一区二区三区| 国产二区三区在线| 日韩人妻无码一区二区三区| 神马影院手机在线观看| 国产+日韩+欧美熟女| 国产精品久久久久久四虎| 国内av一区二区| 欧美在线观看免费播放视频| 色偷偷偷久久伊人大杳蕉| 青青青草视频在线| 香蕉久久国产超碰青草| 久久久久久国产精品高清| 麻豆果冻传媒潘甜甜丶| 国产精品无需播放器在线观看 | 一区一区三区产品乱码亚洲| 2020亚洲欧美国产日韩| 最新日韩精品中文字幕| 亚洲乱码国产乱码精品精乡村| 亚洲AV成人噜噜无码网站| 欧美日韩大香蕉岛国在线视频| 少妇又色又爽又刺激视频| 日本欧美亚洲中文在线观看| 欧美大片一区二区三区视频| 国产精品人成视频免费软件| 欧美黄色免费视频| 免费+精品+国产网站| aaaaaa毛片| 人妻熟女一区二区aⅴ向井蓝| 99久久精品国产综合| 最近2019年中文字幕视频| 色综合久久88色综合天天人守婷| 亚洲风情亚aⅴ在线发布| 什么网站可以看毛片| 毛片毛片毛片毛片| 国产精品久久久久久妇女6080 | 欧美亚洲日本国产爽快片| 欧美一级淫片007| 亚洲国产精品日日爽爽视频| 大家可以在这里国产一级淫片a视频免费观看 | 999在线观看精品免费不卡网站| 天堂在线天堂新版| 久久精品中文字幕无码| 美利坚合众国av| 麻豆激情久久av| 国产精品女主播阳台 | 天天综合天天做天天综合| 黄色免费av网站| 国产91久久婷婷一区二区| 激情综合色综合啪啪开心| 日韩做a爰片久久毛片a片 | 国产+jk制服+在线| 亚洲成av人片不卡无码| 日本少妇BBw高潮| 亚欧日韩欧美网站在线看| 999国产精品视频| 日本不卡在线播放| 巨爆乳无码视频二区涩漫| www.久久综合| 国产精品色婷婷久久99精品| www.免费视频| 国产精品1000夫妇激情啪| 久久综合婷婷成人网站| 精品国产鲁一鲁一区二区三区| 91精品久久久蜜桃网站| 日本欧美国产一区二区三区| 国产在线精品一区二区夜色| 亚洲成AV人片一区二区密柚 | 日韩欧美国产一区二区三区久久| 97无码精品综合| 亚洲熟妇成人精品一区| 91成人在线视频| 精品国产三级大全在线观看| 久久久久久久久久国产视频| 182tv午夜福利| 一道本高清一区二区av| 久久蜜桃资源一区二区老牛| 国产精品国产成人国产三级| 日韩综合无码不卡Av | 国产美女精品中文网蜜芽宝贝 | 无码人妻少妇久久中文字幕蜜桃| 最新av偷拍av偷窥av网站| 67194在线观看高清电视剧| 18禁美女无遮挡在线看| 亚洲老熟女av一区二区| 亚洲+视频+免费| 久久99热只有频精品8国语 | 99久久精品无码一区二区三区| 欧美一级在线a级在线视频| 最新国产在线观看中文字幕| 亚洲日韩av一区二区三区四区 | 韩国巜干柴烈火〉床戏| 无遮挡又黄又爽的免费视频| 50路の垂乳な肉体 | 欧一美一婬一伦一区二区三区麻婆| 制服丝袜诱惑一区二区三区| 日本精品视频一区| 偷自拍亚洲综合在线| 国产又粗又长又硬又爽又黄视频| 精品国产av色欲果冻传媒| 国产亚洲精品久777777| 国产乱码精品一区二区三| 免费在线观看一区| 久久久噜噜噜久久中文字幕色伊伊| 国产高清在线a免费视频观看| 日本卡2卡3卡4卡5卡精品视频| 国产成年码av片在线观看| 深夜男女福利18免费软件| 日本无卡码高清免费v| 久久综合精品视频| 成人免费国产精品视频| 亚洲乱码国产乱码精品精的特点| 女人被强╳到高潮喷水在线观看| 黄色一区二区三区在线观看| 日韩高清亚洲日韩精品一区二区| 亚洲国产日本韩国欧美mv| 什么网站可以看毛片| 国产区日韩区欧美区| 在线观看+中文字幕| 亚洲狠狠婷婷综合久久久久图片| 日本无卡无吗二区三区入口| 亚洲国产成人精品女人久久久逼| 四房播播五月天+在线播放| 中日韩无砖码一线二线| 久久免费观看视频| 国产91久久婷婷一区二区| 国产高清在线不卡| 91女人18片女毛片60分钟| 韩国一级精品毛片| 欧美亚洲国产片在线播放| 亚洲乱码国产乱码精品精男男| 日韩欧美亚洲精品在线播放| 亚洲麻豆91传媒| 亚洲精品国产嫩草在线观看免费| 国内精品久久久久久久影视麻豆| 亚洲色18禁成人网站www| 国产在线视频不卡一二| 精精国产欧美一区二区三区| 国产又粗又长又猛黄色视频| 少妇久久久久久久| 又色又爽又黄又无遮挡的网站 | 91香蕉精品在线观看视频| 亚洲成a人一区二区三区| 国产盼盼私拍福利视频99| 免费在线观看不卡av| 一道本高清一区二区av| 九色手机在线视频播放| 国产Av午夜精品一区二区三区| 国产精品一区二区免费| 国产剧情一区在线| 亚洲欧美激情五月在线观看| 日日鲁夜夜如影院| 东北中熟妇高潮50分钟| 国产成人在线公开免费视频 | 国产淫语对白说脏话aV| 日本道免费精品一区二区| 日产精品1区2区3区| 九九99久久精品在免费线bt| 亚洲国产精品成人综合色区| 日本一级理论片在线大全| 又色又爽又黄的免费网站aa| 在线黄色av网站| 欧美激情视频一区二区三区不卡| 亚洲国产初高中生女手机视频网| 欧美日韩国产一区二区三区在线| 亚洲国产成人av片在线播放| 中文字幕亚洲精品无码| 久久久久国产精品视频| 国产自偷亚洲精品页65页| 香蕉视频在线网址| 精品一区二区三区四区| 国产精品美女久久久久AV福利 | 男女猛烈激情xx00免费视频| 亚洲精品入口一区二区乱| 成人午夜片免费在线观看| 小视频在线观看免费日本色| 国产欧美综合在线观看第十页 | 欧美日韩亚洲国产九色91| 亚洲日韩国产精品第一页一区| 日韩欧美中文字幕在线播放| 午夜成人片在线观看免费播放| 国产免费不卡av黄色一级片| 香蕉视频在线免费看| 在线天堂中文最新版资源| 搡老岳熟女国产熟妇| 亚洲国产成人久久一区二区三区| www.成人在线观看| 在厨房拨开内裤进入毛片| 欧美精品一区二区高清在线观看| 日日鲁夜夜如影院| 日韩乱码在线观看免费视频网站| 国产日韩欧美手机在线视频| 国产精品白丝av嫩草影院| 国产日韩欧美亚欧在线| 久久精品国产清高在天天线| 欧美国产成人精品一区二区三区 | 久久精品亚洲成在人线av麻豆| 国产精品视频在线观看| 亚洲AV成人片无码| 91久久精品一区二区三区| 欧美福利在线视频| 色综合久久久久综合99| 国产精品久久久久久久免费大片| 日本高清在线www3344| 精品视频一起草在线播放| 日本在线a一区视频| 无码av中文一区二区三区| 迅雷+无码+椎名| 青青草原亚洲视频| 精品无人区麻豆乱码1区2区| 国产精品综合在线| 《朋友的妈妈2》中字头歌词华丽的外出| 777奇米四色成人影视色区| 国产精品一区二区三区九一麻豆| 亚洲第一狼人天堂久久| av无码+高潮+白丝| 日韩欧美亚洲国产第一页| 国产真实自在自线免费精品| 日本一区二区三区黄色片v| 日韩欧美在线一级| 亚洲va久久久噜噜噜熟女软件| 在线视频中文字幕一区二区三区| 免费看国产一级特黄aa友片| 特级毛片a片久久久久久| 国产女人叫床高潮视频+在线观看| 精品国产91久久久久久一区| 国产精品久久久久婷婷| 久久天天躁日日躁狠狠躁| 一区二区三区国产乱码a| 精品国产亚洲av丝袜高跟| 欧美人妻456aⅴ中文字幕| 美足+丝袜+影音先锋| 无遮挡高潮国产免费观看韩国| 国产亚洲又爽ⅴa在线天堂| 蜜桃视频在线观看免费网址入口| 日韩欧美亚洲精品在线播放 | 无码少妇高潮浪潮av久久| 欧美精品午夜一区二区三区| 亚洲精品久久久久久蜜臀| 国产av亚洲第一女人av| 亚洲国产日韩视频观看| 奶水人妻freeHDXⅩXX| 国产成人av综合久久视色| 亚洲国产精品97久久无色| 日本+欧美+专区| 成人做爰100部片免费下载| 午夜精品一区二区三区免费| 国产精品人八做人人女人a级刘| 久久精品国产亚洲av久野外| 成人动漫视频在线观看免费高清| 影视av久久久噜噜噜噜噜三级| 成人含羞草一区二区三区| 精品久久久噜噜噜久久| 国产精品美女无遮挡在线观看| 无套内射视频囯产| 久久免费看少妇高潮a| 尤物97国产精品久久精品国产| 国产老A熟妇三区| 国产午夜草莓视频在线观看| 天堂av国产夫妇精品自在线| 中文字幕一区二区三区四区视频| 亚洲人成伊人成综合网小说| 波多野结衣美女中文字幕视频| 无码中文字幕色专区| 亚洲综合国产精品第一页| 东北高大丰满BBBBzBBB| 国产后入清纯学生妹| 人成午夜免费视频在线观看| av岬奈奈美一区二区三区| 国产美女视频一区二区三区| 精品久久香蕉国产线看观看亚洲| 日韩成人av福利在线| 无翼乌18禁全肉肉无遮挡彩色| 西西4444www无码精品| 免费的短视频app大全下载安装| 亚洲欧美一级久久精品国产特黄| 免费观看真人视频直播7777| 91精品国产精品| 真人少妇高潮久久免费毛片| 91国產乱高潮白浆| 丁香花在线高清视频完整版观看| 国产偷国产偷亚洲高清人乐享| 日韩精品无码一本二本三本色| 日韩视频一区二区| 亚婷婷洲av久久蜜臀小说| 18+韩国美女主播| 中文人妻av久久人妻18| 精精国产xxxx视频在线观看| 亚洲精品国产熟女久久久| 疯狂做爰xxxⅹ高潮潮喷后感染| 国产成人avxxxxx在线观看| 一本岛高清乱码2020叶美 | 久久久久久久一区| 国产又爽又黄无遮挡免费视频| 无码精品人妻系列| 久艹在线观看视频| 东京亚洲女图片在线观看| 色婷婷国产精品高潮呻吟av | 亚洲精品一区二区三区香蕉| 天堂√最新版在线| 国产精品女同一区二区久| 强行18分钟处破痛哭MJ| 免费看60分钟涩涩视频| 西西妺妺窝窝777777777| 精品国产自在精品国产浪潮| 在线观看的av网址| 国产又色又爽又刺激在线观看| 日韩做a爰片久久毛片a片| 九九热线视频精品99| 熟妇人妻一区二区三区四区| 精品福利视频一区二区三区| 国产熟女一区二区三区+视| 国产精品―色哟哟| 成人做爰黄级a片免费看土方| 久久99久久99精品免观看粉嫩| 中文字幕一区三级久久日本| 日韩美女/一区二区三区| 国产美女无套爽到高潮视频| gogogo手机高清视频免费观看| 青青草国产在现线免费观看| 国产精品人妻系列21p| 欧美高清在线免费观看视频| 中文字幕制服丝袜第57页| 国产偷窥熟女高潮精品视频 | 国产福利专区视频在线播放| 日本大片又大又好看的PPT模板视频 | 少妇高潮7777777丫乄| 无码人妻一区二区三区免费n鬼逝| 中日韩乱码一二新区| 国产女人叫床高潮视频+在线观看| 欧洲vodafonewifi巨大动漫| 中日精品无码一本二本三本| 欧美精品久久久久久久久久| 男女啪啪激情视频免费观看国产 | 少妇嫩搡BBBB搡BBBB| 一本一本久久a久久精品综合不卡 日本在线一区二区三区欧美 | 亚洲精品日韩一区二区小说 | 97SE亚洲精品一区| 一本色道av久久精品+网站| 国产欧美日韩一区二区三区| 中文字幕精品av一区二区五区| 日本一区二区视频免费| 熟女乱色一区二区三区91| 免费看国产一级特黄aa友片 | 亚洲精品成人区在线观看| 亚洲s久久久久一区二区| 国产精品区一区二区三| 狠狠躁18三区二区一区| 亚洲h精品动漫在线观看| 国产在线观看香蕉视频网| 国产美女精品视频免费播放软件| 在线播放国产精品| 亚洲欧美日韩综合久久久久久| 日韩欧美一区视频| 激情五月婷婷久久| 免费人成视频19674不收费| 久久精品免费全国观看国产| 草色噜噜噜av在线观看| 国产精品久久精品免费视频| 永久综合精品网站在线免费观看| 成人含羞草一区二区三区| 手机无码人妻一区二区三区免费| 亚洲午夜久久久影院| 天堂av无码大芭蕉伊人av孕妇| 国产成人在线精品| 国产av亚洲aⅴ一区二区| 欧美大片免费播放器| 日韩毛片+18+成人网| 动漫成年美女h漫网站漫画| 无码综合天天久久综合网 | 精品美女一区二区| 四川少妇搡搡BB| 亚洲国产尤物在线观看视频| 久久精品国产亚洲av成人婷婷 | 中文字幕日产乱码一二三区 | 日韩精品免费一区二区三区四区 | 少妇精品揄拍高潮少妇| 麻豆精品人妻一区二区三区蜜桃| 99与久久国产精品视频| 手机av中文字幕| 骚虎成人免费99xx| 国产精品久久久久久久久久久久午夜片| 亚洲欧美日本在线| 亚洲+先锋影音+图片| 初撮八十路高龄老熟女| 人人澡人人澡人人看添| 亚洲欧美日韩人成在线播放 | 成人做爰高潮片免费视频 | 日韩美女免费毛片一区二区| 欧美视频在线观看| 婷婷丁香五月激情综合| 一区二区三区国产网站麻豆| 亚洲丝袜制服诱惑第一区二区| 日韩精品无码一区二区三区免费| 日韩精品中文在线观看一区| 亚洲欧美激情五月在线观看| 亚洲高清无码视频| 精品人妻人伦一二三久久久久 | 亚洲一区二区三区四| 国产人妻人伦精品潘金莲| 国产l精品国产亚洲区在线观看| 日本一卡二卡不卡视频查询| 亚洲欧美激情另类图片小说| 国内精品国产三级国产a久久| 久久机热在线国产视频手机| 偷拍一区二区三区| 中文字幕av一区中文字幕天堂| 一本大道道久久综合av| 大波美女一级a久久午夜| 自拍视频一区二区| 在线观看国产精品冒白浆| 麻豆黑色丝袜jk制服福利网站| 视频一区二区中文字幕在线| 国产在线精品一区二区在线看| 无码中文字幕加勒比一本二本| 国产黄又爽免费在线观看的视频 | 日韩高清在线亚洲专区小说| 强开小婷嫩苞又嫩又紧视频韩国| 中文字幕国产专区欧美激情| 欧美一卡二卡三卡四卡视频区| 久久精品无码一区二区软件| 久久99精品国产麻豆婷婷| 公共场合高潮(h)公交车| 欧美经典影片视频欧美一级网站| 国内精品伊人久久久久av一坑| star+433+影音先锋| 国产一区二区在线视频观看| 欧美成人午夜一卡二卡在线视频| 黑人好猛厉害爽受不了好大撑| 久久综合久久自在自线精品自| 国产浮力第一页草草影院| 久久精品国产99精品国产2021| 亚洲精品久久久久中文字幕一福利| 国产又大又猛又粗视频在线观看| 理论片+亚洲+欧美| 免费观看四虎国产精品午夜| 女女百合av大片一区二区三区九县| 国产精品扒开腿做爽爽| 伊人热热久久原色播放www| 99国产精品免费播放| 国产精品igao视频网| 高清无码成人视频| 亚洲国产精华液网站w| 亚洲日韩一区二区一无码| 成人日韩欧美视频在线观看| 影音先锋+成人资源| 久久国产精品久久国产精品99| 国产精品久久久区三区天天噜| av天堂最近中文在线免费观看| 国产成人综合欧美精品久久| 伸进她的小内裤疯狂揉摸漫画| 亚洲2017天堂色无码| 成人无码麻豆αV无码不卡| 久久综合久久自在自线精品自| 大桥未久+无码+中文字幕| 亚洲第一成年免费网站| 夜夜爽夜夜叫夜夜高潮漏水| 一区二区三区欧美视频| 亚洲一级视频在线观看视频| 超污视频在线观看| 国产欧美亚洲首页| 制服丝袜第一页在线| 久久精品久久久久久| 中国老熟妇在线视频| 亚婷婷洲av久久蜜臀小说| 久久国产V一级毛多内射| 婷婷在线精品视频免费观看| 巨大荫蒂视频欧美另类大| 久久夜色撩人精品国产小说| 欧美成人看片一区二区尤物| 国产伦理一区二区三区| 18+免费+日韩毛片| 久久久久蜜桃精品成人片公司| rmvb+下载+在线播放| 狼伊人一级免费毛片| 国产精品永久免费视频| 国产亚洲999精品aa片在线爽| 六夫共妻高H喷汁呻吟NP| 国产精品久久久久久久久免小说 | 国产亲子乱弄免费视频| 年轻内射无码视频| 国产精品欧美激情一区二区三区| 国产福利视频一区二区三区| 强奷乱码中文字幕熟女导航| 久久久精品午夜免费不卡| 日本www在线观看| 中出素人久久久久久国产精品| 高清国产一区二区三区四区五区| 国产自偷亚洲精品页65页| 樱花在线视频免费观看电视剧网站| 国产亚洲成年网址在线观看| 欧美亚洲天堂视频在线观看| 国产高清午夜人成在线观看| 国产欧美二区综合| 四虎精品美女国产在线观看| 日韩欧美中文字幕一区二区| 777777农村二级毛片| 国产又黄又粗又硬的视频| 日日摸日日碰夜夜爽无| 韩国n号房视频+在线观看| 国产日韩欧美一区| 日韩欧美国产一区呦呦91| 精品不卡一区中文字幕| 久久国产精品免费久久久| 日韩欧美精品v片免费看| 欧美另类与牲交zozozo| 亚洲中文字幕人成乱在线 | 巜交换做爰2h无删减| 99国产精品久久久久久久久久| 精品国产日韩欧美一级一区二区三区| 国产黄a大片真人免费视频| 696息子精品一区| 五月天久久久久久九一站片| 成人免费在线观看h视频| 成人免费看黄网站在线观看 | 午夜福利国产精品久久| 91视频免费网站| 国产互换人妻5P| 国产精品美女www爽爽爽爽| 国产愉拍自拍中文在线| 国产av大陆精品一区二区三区 | 欧美三日本三级三级在线播放| 东北老女高潮过瘾对话| 国产三级免费观看| 国产二区三区在线| 亚洲国产精品日日爽爽视频 | 黑人巨大猛烈捣出白浆| 免费全部高h视频无码软件| 免费看的av网站| 亚洲欧美一区二区精品久久久| 国产精品久久久久久亚洲综合网| 亚洲精品一区三区三区在线观看| 又大又紧又粉嫩18p少妇| 黄色免费网站在线| 亚洲视频制服丝袜在线观看| 人妻丰满熟妇av无码区App| 91av在线视频观看| 亚洲欧美成人一区二区三区| 国产黄视频在线观看91| 国产亚洲精品久777777| 精品欧美高清视频在线观看| 天天射天天干天天色| 亚洲成Av人在线观看网站| 97在线播放免费观看全集电视剧| 自拍亚洲欧美日韩一区二区三区| 亚洲天天做日日做| 日韩综合无码不卡Av | 国产又爽又粗又猛的视频| 久久久精品7777777| 久久精品国产亚洲av高清色| 国产一区二区在线观看视频免费| 免费av大全网站在线观看| 在线观看免费人成视频播放| 亚洲成av人片天堂网无码】| 亚洲国产成人av| 日韩精品在线毛片| yjizz视频网| 床戏(巨肉高h)双男| 久久精品九九热无码免贵| 精品精品国产欧美在线| 极品少妇被啪到呻吟喷水| 欧美巨茎A片在线观看| 亚洲一区二区三区国产| 9.1入口在线观看免费| 亚洲天天摸日日摸天天欢| 久久婷婷人人澡人人喊人人爽| 久久久久免费看成人影片| 久久久91色精品国产一区| 国产精品欧美精品日韩专区一乛方| 久久国产精品久久国产精品99| 国产剧情v888av| 人妻有码精品视频在线| 亚洲一区二区三区高清在线看 | 久久婷婷六月综合国产激情ai| 人妻av中文无码| 国产偷人妻精品19p| 9299yy看片婬黄大片软件 | 黄色免费在线视频| 国产91精品久久久久久精华液| 大粗鳮巴征服尤物老师| 免费+岛国+h动漫| 欧美热在线视频精品999| 免费在线观看亚洲| 国产一级中文字幕在线观看 | 欧美一级黃色A片免费看蜜桃熟了| 亚洲中文字幕av一区二区三区| 伊人狠狠色丁香婷婷综合| 波多野结衣中文字幕一区二区三区| 成人做爰黄A片免费看陈冠希| 99riav欧美丰满少妇视频| 午夜精品久久久久久久| 精品美女www爽爽爽在线| 91社区在线播放| 久久亚洲精品人成综合网| 成人高清免费观看| 狠狠躁18三区二区一区| 自拍视频一区二区| 中文字幕视频在线欧美一区| 亚洲永久精品ww47| 国产成人尤物在线视频| 免费观看成人毛片| 午夜婷婷精品午夜无码a片影院 | 国产免费网站看v片在线无遮挡| 色婷婷av久久久久久久| 一本色道av久久精品+网站 | 国产情人综合久久777777| 欧美+日本+亚洲| 国产亚洲999精品aa片在线爽| 国产熟妇乱子伦视频在线观看| 国产+传媒+国产av| 久久亚洲国产五月综合网| 日本xxxxl码在中国是几码| 凹凸69堂国产成人精品视频| 久久人妻少妇嫩草av红粉| 精品人妻少妇一区二区三区不卡| 国产成人精品男人的天堂网站| 欧美日韩精品亚洲色图视频免费| 欧美+国产+精品| 久久久久亚洲十八禁精品国产| 欧美+成人精品+三级在线| 在线天堂中文最新版资源| 欧美视频在线观看一区| 天堂岛国av无码免费无禁网站| 亚洲精品美女久久久久9999| 亚洲AV一二三又爽又色又色| 日韩人妻无码免费视频一二区| 欧美在线播放一区二区欧美馆| 300部大龄熟乱视频| 波多野结衣黑人149分钟| 久久亚洲春色中文字幕久久久| 久久女人天堂精品av影院麻| 欧美午夜精品久久久久久杨幂| 小视频在线观看免费日本色| 正在播放懂色av| 中文字幕在线播放第一页| 国产日韩欧美精品| 国内精品伊人久久久久av一坑| 欧美专区日韩视频人妻| 精品熟妇av一区二区三区四区| 一本加勒比hezyo爆乳| 日本护士xxxxhd少妇| 欧美日本91精品久久久久| 欧美黄色免费视频| 牛牛在线免费视频| 小视频在线观看免费日本色 | 国产伦久视频免费观看| 成人美女免费网站视频| 国产美女直播亚洲一区久久| 亚洲欧美中文字幕在线net| 麻豆精品国产熟妇aⅴ一区| 综合激情丁香久久狠狠| 四虎影视1515hhc0m| 亚洲av成人一区国产精品一| 国产精品一国产精品一k频道| 毛片在线免费视频| 六夫共妻高H喷汁呻吟NP| 99久久免费精品国产72精品九九| 国产真人实拍女处实破| 国产高清一区二区三区视频| 日韩人妻少妇一区二区| 精品人妻人伦一二三久久久久 | 亚洲中文字幕a∨在线| 妺妺窝人体色777777小馒头| 日韩av大片在线观看| 欧美+日韩+成人| 国产精品99久久久久久董美香| 国产av大陆精品一区二区三区| 国产精品zjzjzj在线观看| 国产91精品欧美| 无码人妻精品中文字幕不卡| 成年人免费视频在线| 国内精品九九久久久精品| 亚洲精品丝袜国产自在线| 五十路の完熟豊満无码| 国产99久久久国产精品潘金| 俄罗斯A片巜豪妇荡乳| 一区二区三区在线欧洲污| 久久精品国产久精国产思思!| 亚洲+欧美+综合| 欧美国产成人精品一区二区三区| 40岁成熟女人牲交片| 久久久91色精品国产一区| 这里只有精品国产| 亚洲一级视频在线观看视频| 久久人人爽人人爽人人片亞洲| 爆黑正能量料最新| 青草av久久免费一区| 好吊妞国产欧美日韩免费观看| 国产精品久久国产| 国产精品欧美一区二区三区奶水| 国产哺乳奶水91在线播放| 国产区77777777免费| 人小说网站在线观看| 国产精品原创巨作av女教师| 少妇下面好紧好多水播放| 欧美巨茎A片在线观看| 国产传媒在线播放| 自拍视频国产三级| 欧美亚洲国产精品第一页| 91偷自产一区二区三区精| 人妻+日本+调教| 日韩欧美亚洲国产精品幕久久久| 国产色综合天天综合网| 国产自产21区在线观看| 国产一区二区三区四区精华| 精品久久久久久久无码人妻热| 成人一区二区在线播放| 亚洲欧美精品午睡沙发| 国产精品久久久久久久久久妇女| 97国产乱码精品一区二区三上| 成人免费视频播放| 很黄的视频国产在线观看| 国产jjizz一区二区三区老人| 中文字幕高清一区| 91日本人妻精品一区二区| 蜜桃视频在线观看免费网址入口| 国产人妖在线视频| 国产综合色在线精品| 精品久久国产字幕高潮一| 五月婷婷丁香在线| 久久99国产综合精品女下载同| 精品国产综合区久久久久久小说 | 中文在线字幕观看电视剧hd| 一本色道久久HEZYO无码| 国产suv精品一区二区四区三区| 激情无码人妻又粗又大中国人| 欧洲高清转码区一二区| 99re在线观看视频在线观| 日本中文字幕一区二区高清在线| 巨乳+群p+在线| 9+1+视频在线| 久久精品www人人做人人爽| 爽交换快高h中文字幕| 菠萝菠萝蜜视频免费观看播放| 18禁美女无遮挡在线看| 高潮少妇高潮久久精品99| 免费看成人aa片无码视频| 成人午夜视频在线观看| 痴汉电车人妻被内谢下面很多水 | www.久久综合| 中文字幕在线观看网站| 亚洲国产精品久久久久久久秋霞| 乌克兰女人大白屁股ass| 好大好湿好硬顶到了好爽视频| 欧美日韩国产免费观看一区二区| 色88欧美日韩国产无线码| 一本大道苍井空波多野结衣| 漂亮少妇高潮a片xxxx| 欧美日韩国产精品| 超清中文乱码字幕在线观看 | 97精品一区二区视频在线播放 | 在线视频国产99| 久久久婷婷五月亚洲97色| 久久国产露脸老熟女熟69| 国产小呦泬泬99精品| 亚洲视频十八禁在线无遮挡| 亚洲人成精品久久久久桥| chinese开小嫩苞videos| 日本五十肥熟交尾| 久久久这里只有精品10| 亚州精品国产精品乱码不99按摩 | 窝窝影院在线播放免费观看电视剧 | 成人免费在线网站| 黄色免费av网站| 交专区videossex| 久久露脸国语精品国产91 | 婷婷精品久久久久久久久久不卡| 国产视频一区二区二区三区| 视频一区二区三区在线观看| aa亚洲永久免费精品免费| 欧美一区二区三区巨免费| 精品国产一区二区三区久 | 人妻丰满熟妇av无码区免| 粉嫩美鮑国产一区二区| 18+在线视频网站| 美女在线观看免费视频网站| 亚洲日韩av综合无码一区| 欧美激情国产一区二区13| 乱子伦国产对白在线播放| 日韩成人av免费在线观看| 酒吧+天海翼+影音先锋| 成人无码麻豆αV无码不卡| 欧美+中文字幕+国产| 天堂8а√中文在线官网| 日韩一级片中文字幕| 91亚洲高清视频在线观看| 999在线观看精品免费不卡网站| 国产男生午夜福利免费网站| 91狠狠色丁香婷婷综合久久| 日本少妇又色又爽又高潮看你 | 大桥未久+高清无码| 国产最新精品自产在线播放 | 日本一区二区在线视频网站 | 日韩乱码在线观看| 一个人免费视频www在线观看| 亚洲成a人v欧美综合天堂麻豆| 99精品国产再热久久无毒不卡| 殴美亚洲精品182| 麻豆精品国产专区在线观看| av在线播放+亚洲+不卡| 国产精品熟妇一区二区三区四区| 日韩国产高清在线| 国产在线一区二区香蕉| 天天爽夜夜爽人人爽qc| 欧美网站大全在线观看| 日本欧美亚洲中文在线观看| а天堂中文最新一区二区三区| 91精产国品一二三产区区动漫| 久久夜色精品国产噜噜亚洲SV| 欧美xxxx做受欧美69| 男女一进一出超猛烈的视频| 一本色道88久久加勒比精品| 亚洲丝袜制服诱惑第一区二区| 四虎精品在线播放| 国产精品欧美一区二区三区不卡 | 成人H动漫精品一区二区无码软件| 精品一区二区三区无码免费直播| www.精品综合久久久久| 阿v天堂一区二区在线观看| 玩弄少妇高潮a片水蜜桃网站| 黄片久久久久久久黄片久久| 国产91久久婷婷一区二区| 天堂在线天堂新版| 亚洲中文av字幕在线观看| 久久久国产精品福利一区| 中文字幕+亚洲一区二区三区| 欧美成人在线网站| 99久久人妻精品免费二区| 国产精品爆乳在线播放| 国产精品免费视频色拍拍| 妈妈你真棒插曲mv在线观看免费| 少女国产免费观看高清电视剧大全| 韩国和日本免费不卡在线v| 拍拍拍无挡免费视频| 日韩乱码人妻无码中文字幕久久| 97色伦综合在线欧美视频| 色综合天天综合网国成人网| 91兰州熟女富婆露脸| 中文字幕+人妻+少妇| 亚洲国产欧美中文手机在线 | 国产又色又爽又黄又免费文章| 国产精品久久久久av熟女老人| 国产精品久久久久久久久动漫| 久久久99久久久国产自输拍| 国产精品夜夜爽7777777| 午夜一区二区亚洲福利| 成人做爰A片免费播放乱码| 深夜福利在线播放| 精品久久久久久久久免费视频| www日韩avcom| 亚洲成高清a人片在线观看| 亚洲国产精品热久久| 亚洲一区无码中文字幕| 久久婷婷综合99啪69影院| 国产精东天美av影视传媒| 贵州小少妇BBAABBAA视频| 欧美一区二区三区四| 久草在视频免费福利| 亚洲综合图色40p| 亚洲精品第一国产综合麻豆| 久久亚洲AV午夜福利精品一区| 骚虎成人免费99xx| 欧美日韩在手机线旡码可下载| 中文字幕+av在线| 《美丽妻子替弟还债》剧情| 亚洲伦理日韩无码| 免费网站观看www在线观看| 91麻豆精选国产自产免费观看| 另类+偷窥+中文| 高清国产一区二区| 日本很黄色的网站一区免费观看| 亚洲精品无amm毛片| 国产日韩欧美91| 国产一区二区在线观看免费视频 | 久久综合亚洲精品一区二区| 国产片淫级awww| 久久久青青久久国产精品| 国产精品主播一区二区三区 | 一女三黑人理论片在线| 欧美日韩精品人妻三区东京热| 亚洲第一毛片18我少妇| 国产精品亚洲一区二区在线观看| 国产明星精品一区二区刘亦菲| 亚洲高清www色好看美女| 亚洲欧美日本国产高清| 一区二区激情av| 国产精品露脸视频| 18+免费视频下载| 最新久久99国产亚洲高清观看首页视频| 亚洲日本一区不卡在线观看| 精品亚洲成熟女人www| 茄子视频国产在线观看| 日韩欧美在线第一页| 国产精品一区二区三区va| 69做爰高潮全过程免| 奇米第四色777| 欧美中文字幕一区二区三区乱码 | 欧美伊香蕉久久综合网另类| 精品福利视频一区二区三区| 让少妇高潮无乱码高清在线观看| 99国产精品久久久久久久久久| 久久国产午夜精品理论片推荐| 免费在线观看AV| 在线精品亚洲观看不卡欧| 久久精品99久久香蕉国产| 国精产品99永久一区一区| 日本人妻丰满熟妇www色| 午夜dy888理论久久| 日本高清乱理伦片中文字幕| 午夜在线视频一区二区区别| 亚洲AV无码一区二区二三区∝| 国产裸体舞一区二区三区| 能免费在线观看av的网站| 东京热久久综合日韩精品| 八戒视频在线观看免费播放电视剧| 视频在线一区二区| 欧美精品亚洲精品日韩在线观看 | 亚洲国产精品久久久久福利 | 国产成a人亚洲精品在线观看| 中文字幕av在线播放| 2022年国产精品一区二区| 久久伊人精品视频| 国产+高潮+刺激| 亚洲精品入口一区二区乱| 一卡二卡三卡在线视频| 怡红院一区二区三区在线| 日本在线观看www| 日日噜噜夜夜狠狠久久丁香五月| 91插插插com| 欧美日韩在线视频一区| 国产精品xxx在线观看a| 摸bbb揉bbb揉bbb视频| 国产区77777777免费| 伊人婷婷六月狠狠狠去| 中文字幕+欧美+日韩| 午夜精品久久99蜜桃的功能介绍| 国产成人精品一区二三区四区五区| 134vcc影院免费观看| 成人做爰黄A片免费看三区蜜臀| 真实乱偷全部视频| 九九99久久精品综合| 中文字幕+中文字幕在线| 国产三级精品三级在线| 极品少妇伦理一区二区| 日本少妇又色又爽又高潮看你| 成人午夜精品一区二区张津瑜| 亚洲+男人的天堂+一区二区 | 四虎国产精品成人免费影视| 日本精品videosse×少妇| 91中文字幕视频| 香蕉97超级碰碰碰免费 | 欧美色欧美亚洲另类七区| 国产又色又爽又黄又免费文章| 日韩免费无码视频一区二区三区| 明星乱淫免费视频欧美| 久久亚洲精品国产亚洲老地址| 国产成av人片久青草影院| 九九九久久国产免费| 久久久久久久一区| av黄网站免费永久在线观看| 伊人久久精品无码av一区 | 超碰在线最新地址| aaaaaa毛片| 一本大道精品视频在线| 亚洲欧美日本国产| 亚洲精品一品区二品区三区| 亚洲一区日韩在线| 97caoporn国产免费人人| 久久婷婷丁香七月色综合| 国产精品成年片在线观看| 国产精品不卡av| 亚洲婷婷天堂在线综合| 亚洲无吗在线视频| 国产日韩欧美91| 亚洲国产精品久久久毛片| 日韩一区免费视频| 亚洲欧洲一区二区在线观看| 欧美日本三级少妇三级久久| 天堂岛视频在线观看欧美日韩| 中文字幕丝袜人妻乱一区三区| 欧美+国产+在线观看| 天堂中文在线免费观看视频| 天天狠天天插天天透| 国产精品r级最新在线观看| 亚洲综合久久一本伊一区| 欧美黑人做爰爽爽爽| 亚洲一区二区美女在线观看| 国产成人精品亚洲一区二区麻豆 | 黄色激情视频网站| 国产福力片一区九区| 亚洲国产一区二区在线| 国语少妇私密推油S卩A视频在线| 黄色av网站免费观看| 182在线观看视频| 1234区中文字幕在线观看| 国产美女免费网站| 91嫩草欧美久久久九九九| 亚洲寝取熟女av一区二区三区| 按摩轻轻挺进人妻| 成人国产av一区二区三区 | 久久精品人人做人人综合试看| 99久久极品少妇深夜福利| 亚洲自偷自偷在线成人网址| 人人澡人人爽夜欢视频| 国产精品久久久久久av福利| 中文字幕a片视频一区二区| 日韩人妻无码一区二区三区| 亚洲+精品+无码视频| 国产+日韩+欧美熟女| 欧美成妇人吹潮在线播放+下载 | 国产剧情中文字幕一区二区 | 窝窝影院在线观看免费高清电视剧下| 四虎影视精品永久免费久久久二| 久久婷婷国产麻豆91| 99精品久久久久久琪琪| 一级黄色免费大片| 亚洲熟妇av综合网| 国产在线jyzzjyzz免费护士| 美日韩熟女与少妇精品激情| 又粗又黄又爽视频免费看| 国产精品国产三级在线...| 波多野结衣中文字幕一区二区三区| bt在线www天堂网在线| 在线精品视频一区二区三四| 国产成人尤物在线视频| 狼伊人一级免费毛片| 美女视频图片久久黄网站 | 日韩人妻不卡一区二区三区| 在线观看视频免费观看91| 无码成人AAAAA毛片AI换脸| 国产精品鲁丝av一区二区| 99r在线精品视频在线播放| 国产精品人妖ts系列视频| 亚洲精品制服丝袜四区| 中文字幕亚洲第14| 中文字幕亚洲欧美中文字幕| 国产成人精品免费视频大全最热| 日韩欧美中文字幕在线视频四区| 色婷婷噜噜久久国产精品12p| 男人天堂视频网站| 久久精品国产亚洲av成人文字 | 国产激情内射在线影院| 最近中文字幕++中文| 久久精品亚洲毛片美女极品视频| 国产sm鞭打调教女m视频| 亚洲av无码一区二区乱子仑| 制服丝袜在线视频| 成av免费大片黄在线观看| 久久人妻天天av| 曰韩无线无卡tⅴ一二三区| 日韩三级国产三级| 妈妈你真棒插曲mv在线观看免费| 九一麻豆成人精品国产免费| 警花av一区二区三区| 少妇9999九九九九在线观看| 国产+免费+裸体| 精品无码成人片一区二区98| 欧美精品久久久久a片18的试看 | 中文字幕日韩一区二区不卡| 91这里只有精品| 在线看片免费人成视频播 | 国产少女免费观看电视剧字幕大全| 国产精品久久久久久久永久免费| 亚洲综合久久成人av| 久久九九视频观看97香蕉国产| 超污视频在线观看| 17c一.起草看片| 中文字幕一二三区波多野结衣| 亚洲欧美一区二区三区另| 18禁国产精品久久久久| 亚洲一卡二新区乱码绿踪林| a级老太婆毛片老太婆毛片| 日韩视频一区二区| 又紧又黄的免费视频网站| 三年成都中文在线观看免费版| 国产一区二区欧美在线观看| 欧美日韩国产免费观看一区二区| 高清国产午夜精品久久久久久| 国产午夜亚洲精品羞羞网站| 洗澡被公强奷30分钟视频| 日韩中精品文字幕在线一区| 中文字字幕国产精品| 泽井芽衣+磁力链接+mp4| 亚洲天堂制服丝袜在线观看| 视频毛片蜜桃视频| 日韩成人在线视频| 风流少妇一区二区三区91| 4488CC.成人A片| 国产无遮挡裸露视频免费| 久久精品免费全国观看国产| 黄色网页在线观看| 啊灬啊灬轻点第一次和外国人| 综合激情丁香久久狠狠| 666妺妺窝人体色WWW| 91精产国品一二三产区区动漫| 成人免费视频国产免费麻豆 | 日本免费更新一二三区不卡| 免费看又色又爽又黄的国产| 久久久噜噜噜久久久精品| 91女人18片女毛片60分钟| 91精品aa一区二区三区| 欧美一区精品中文字幕综合看片| 香蕉视频1024| 国产精品自在线拍国| 麻豆国产97在线精品一区| 少妇av一区二区三区无码| caoporn+视频| 国产中文在线三级不卡| 丁香开心五月婷婷精品伊人| 免费网站在线观看大全电视剧| 日韩裸体人体欣赏pics | 一区二区三区无码按摩精油| 亚洲激情av在线| 亚洲精品成人无码中文毛片不卡| 善良娇妻让公泄欲| 李宗瑞91在线正在播放| 少妇苏霞肉欲第501章| 欧美成人中文字幕视频网站| 国产成久久免费精品av片| 亚洲精品成人国产黄瓜视频| 久久久久久综合网天天| 精品人伦1区2区3区蜜桃| 欧美日本三级少妇三级久久| 中文在线8资源库| 欧美视频在线观看| 97超碰在线免费观看| 182国产精品视频| 夜鲁夜鲁狠鲁天天在线 | 亚洲va欧洲va国产va不卡| 亚洲+日韩+专区| 久久精品苍井空精品久久| 韩国一级精品毛片| 亚洲天堂一区二区免费在线观看| 精选av一区二区三区| 国产成久久免费精品av片| _97夜夜澡人人爽人人喊_欧美| 欧美日韩成人在线免费观看| 国产黄色片网站大全| 全黄久久久久a级全毛片| 精品女二区三区激情免费视频| 欧美日韩国产成人综合在线影院| 色天天综合久久久久综合片| 2020中文字字幕在线不卡| 欧美日韩国产一区二区三区在线| 欧美黑人一区二区| 精品国产av一区二区三区四区 | 亚洲自偷自拍另类第1页| 99精品国产综合久久久久| 爆乳亚洲一区二区'| 99国产精品熟女高清久久久久| av最大免费网站在线观看| 亚洲欧美日韩国产综合v| 国产亚洲日韩在线人成| 欧美成人免费一级| 成人免费淫片aa视频免费| 伊人久久大香线蕉av色| 中文字幕久热精品视频在线| 国产伦精品一品二品三品哪个好| 免费的污污污网站在线观看| 精品亚洲欧美自拍| 一本大道道久久综合av| 国产在线一区二区三区| 日韩中文字幕在线观看一区二区| 国产无遮挡又爽又黄不要vip| 破了亲妺妺的处免费视频国产 | 久久久www成人免费毛片女| 亚洲精品国产av成拍色拍婷婷| 欧一美一婬一伦一区二区三区麻婆 | 迅雷+无码+椎名| 国产无精乱码一区二区三区 | 中文字幕亚洲乱码1区2区| 午夜黄色永久视频| 国产99久久精品一区二区蜜| 欧美成人a免费在线观看| 最新久久99国产亚洲高清观看首页视频| 无码+自拍+磁力链接| 免费+国产+白浆| 亚洲精品一区三区三区在线观看| 免费黄色av网站| 97在线观看永久免费视频| 日韩欧美成人精品一区二区三区| 干淫语对白骚妇视频| 留守熟妇一X88AV| 精品无人国产偷自产在线| 亚洲高清视频一区二区三区| 久久综合久久自在自线精品自| 精品欧美亚洲一区国产高潮| 日本无码一区二区三区| 国产偷人妻精品19p| 无码人妻精品一区二区蜜桃网站 | 国产+欧美+日本| 色婷婷av久久久久久久| 久久99热只有频精品6狠狠| 亚洲精品99在线| 免费+精品+国产| 五月天天爽天天狠久久久综合| 久久精品无码中文字幕| 精品久久久久久无码中文字幕漫画 | 欧美在线播放一区二区欧美馆| 国产成人avxxxxx在线观看| 国产精品极品美女自在线观看免费| 一亚洲区二区三区精品无码| 国产+免费+高潮| 欧美激情videos| 亚洲精品日韩一区二区小说| 国产精品毛片一区二区在线看舒淇 | 又粗又硬又黄的国产视频| 亚洲欧美精品中文一区二区三| 中文字幕亚洲无线码| 九九久久精品免费观看| 亚洲av色噜噜噜久久久女同| 亚洲第一极品精品无码视频| 国产乱子精品免费视观看| 久久99国产精品尤物| 亚洲国产高清久久久久久久久| 少妇久久久久久被弄高潮| 老熟妇午夜毛片一区二区三区| 色偷偷色噜噜狠狠网站30根| 99精产国品一二三产品香蕉| 成人做爰100部片需要多少钱| 亚洲美女免费视频福利试看| 成人影视在线看18| 国产精品天干天干综合网| 无码囯产精品一区二区免费| 国产成人精品男人的天堂网站 | 欧美日韩在线播放| 天堂а√中文最新版在线| av片在线观看免费| 瑜伽+无码+thunder| 国产精品久久久久久成人| 日韩欧美aaaa羞羞影院| 91精产国品一二三产区区动漫| 麻豆天天躁天天揉揉av| 亚洲а∨天堂久久精品喷水| 1024国产成人精品视频| 人与动人物xxxx毛片人与狍| 人妻激情乱人伦视频| 国产精品天干天干综合网| 麻花传剧原创mv在线看完整版高清| 97人妻成年人视频公开| 免费看又色又爽又黄的国产| 欧美一级特黄AAAAA片大水| 日韩成人免费视频| 精品国产av一区二区三区√| 午夜乱蜜桃久久久乱| 夜夜高潮夜夜爽精品欧美做爰| 国产又爽又黄无遮挡免费视频| 亚洲精品丝袜国产自在线| 99久久精品国产亚洲| 国产成人精品自拍| 成人免费视频一区| 黑人好猛厉害爽受不了好大撑| 亚洲精品国产综合99久久夜夜嗨| 久久精品中文字幕有码| 亚洲+欧洲+久久av| 最新大片免费在线观看| 国产亚洲综合欧美视频| 国内偷拍精品视频| 91久久精品视频| 亚洲中文av字幕在线观看| 一区二区三区国产在在线播放| 黄色av网站免费观看| 无码囯产精品一区二区免费| 国产高清视频一区| av久久悠悠天堂影音网址| 国产又爽又黄又舒服的视频| 久久精品国产亚洲精品| 国产成人午夜片在线观看高清观看| 亚洲成在人线av品善网好看| 亚洲国产初高中生女手机视频网| 出差+协和+中文字幕| 婷婷色九月综合激情丁香| 亚洲av片一区二区三区久久| 极品少妇被啪到呻吟喷水| 黄网站在线免费永久观看| 久久99精品久久久久久熟女影| 懂色av蜜臀av粉嫩av分享吧最新章节 | 2022色婷婷综合久久久| h狠狠躁死你h八十年代| 成人动漫视频在线观看免费高清| 亚洲午夜国产片免费观看| 亚洲成人日韩高清在线观看| 国产乱子伦无套一区二区三区| 99久久久久久99国产精品免| 少妇人人凹凸XX凹凸爽凹凸| 午夜福利影院私人爽| 色婷婷一区二区三区四区| 国产精品r级最新在线观看| 国产欧美久久一区二区| 国产高清一区二区三区视频| 日韩综合无码不卡Av | 日日操日日射日日摸欧美| 妺妺窝人体色www在线小说| 免费国产黄网站在线观看| 99久久人妻网站噜噜噜| 精品国产又粗又猛又爽又黄| 9.1人成人免费视频网站| 亚洲愉拍99热成人精品热| 国产欧美精品一区| aaaaaa毛片| 18+视频在线观看| 国产91麻豆一区二区在线| 午夜理论片yy6080私人影院| 妖精视频在线观看免费| 国产女主播尤物视频在线观看| 国产精品国产精品久久久久| 成人精品一区二区三区A片用毒蛇| 九九热在线精品视频| 乱色熟女一区二区| 日韩欧美一区视频| 一本一本久久a久久精品综合不卡| 17c.com喷水少妇| 中国少妇大战黑人白浆| 一本色道久久精品| 乱人伦中文视频在线观看| 亚洲暴爽av人人爽日日碰| 4虎影院永久地址WWW| 久久精品成年人免费看国产片 | 少妇伦子伦精品无吗| 欧美福利在线视频| 国产亚洲精品久久久久久入口| 国产精品亚洲αv| 久久半精品国产99精品国产| 一区二区三区四区亚洲 | 乱子伦息子一区二区| 国产淫伦久久久久久久kkk| 国产一区二区三区视频在线播放| 婷婷亚洲久悠悠色悠在线播放| 无码人妻一区二区三区免费手机| av天堂午夜精品一区二区三区| 国产午夜影视大全免费观看| 亚洲午夜一区二区久久久久 | 丰满少妇被猛烈进入试看| 窝窝午夜色视频国产精品破| AV剧情麻豆映画国产在线观看 | 日韩亚洲国产欧美精品久久| 国产一区二区欧美在线观看| 成人网站免费大全日韩国产| aaaaaa毛片| 国产69精品麻豆| 99精品+麻豆+国产| 色色色色色五月丁香婷婷| 搞美女的视频网站免费看| 国产一区二区三区四区精华| 欧美肥屁videossex精品| 欧美一级一级一级| 黑人大战日本少妇| 99在线精品国自产拍不卡| 欧洲一区二区成人| 四虎精品在线播放| 711公侵犯美丽人妻| 国产又粗又黄又爽又硬网站| 日本一级待黄大片| 亚洲欧洲在线观看| 久久亚洲精品久久国产一区二区| 九九热播视频三级香蕉黄网| 香蕉视频免费网站| 中文字幕+丝袜+女上司| 国产激情美女久久久久久吹潮| 亚洲+欧洲+国产精品| 欧美伊香蕉久久综合网另类 | 国产综合久久久7777777| 强开小婷嫩苞又嫩又紧视频韩国 | 日韩在线中文字幕| 青草影院内射中出高潮| 99久久免费精品国产免费高清| 天海翼精品久久久久中文字幕| 国产美女www爽爽爽免费视频| 亚洲精品久久久久久中文| 亚洲一久久久久久久久| 中文字幕在线观看网站| 摁着她干了好几次嫩B| 日韩中文字幕国产| 黑人大鷄巴video大杂交| 亚洲精品久久久久58| 香蕉久久久久久久AV网站| 五月综合网亚洲乱妇久久| 精品人妻中文字幕在线| 日本三级在线视频| 最近2018中文字幕在线视频| 久久一级黄色大片免费观看| 人妻丰满熟av无码区HD| 国产免费又爽又色又粗视频| 久久亚洲国产男女日穴精选| 亚洲精品在线观看丝袜制服| 日韩亚洲国产中文字幕欧美| 一区二区免费视频中文乱码| 疯狂欧美大伦交乱| 中美日韩亚洲中文专区| 翘臀后进少妇大白嫩屁股视频| 欧美日韩国产一区二区三区精品 | 在线视频国产99| 国产女同一区二区在线观看| 中文字幕+乱码+中文在线| 午夜免费福利视频| 欧美精品亚洲精品日韩在线观看| 成人做爰A片免费观看软件| 爆乳熟妇一区二区三区霸乳| 亚洲精品国偷拍自产在线| 日韩在线看片免费人成视频播放| 美女视频黄频a免费高清不卡| 青青草+深夜福利+免费观看 | japane欧美孕交se孕妇孕交| 狠狠色丁香婷婷久久综合蜜芽| 亚洲人成精品久久久久桥| 久久久久亚洲精品国产日韩精品 | 精品久久久久久国产免费| 亚洲国产精品久久久久福利| 粉嫩99精品99久久久久久桃色 | 高潮+白浆+喷水| 成品片a免费入口麻豆| 久久久91色精品国产一区| 亚洲欧美日韩国产91在线 | 日日操日日射日日摸欧美| 黄色一级大片在线免费看产| 这里只有精品国产| 粉嫩av一区二区三区四区免费| 手机中文字幕在线免费视频| 日日噜噜夜夜狠狠久久无码区| 蜜桃人妻无码AV天堂二区| 黑人与人妻无码中字视频| 国产成人免费午夜不卡视频| 青青草视频在线观看亚洲| 国产又黄又爽又色的免费| 欧美激情精品久久久久久| 伊人狠狠色丁香婷婷综合| 国产嫩苞又嫩又紧AV在线| 国产三级在线三级久操欧美| 97视频在线观看免费| 国产精品一区二区三区女同| 国产一区二区三区久久久久久久| 手机无码人妻一区二区三区免费| 99热这里只有精品九九9| 亚洲AV无码片一区二区三区| 深夜福利网站在线| 东京热一精品无码av| 制服丝袜诱惑在线观看一二区| 一区二区三区+国产+欧美日韩| a级特黄一级一大片多人| 日韩欧美高清在线一区二区 | 91精品国产色综合久久不卡98 | 一个人看的视频www中文字幕 | 99国产精品18久久久久久| 丰满女人无套内谢| 国模冰莲小泬喷潮337p| 色综合久久88色综合天天人守婷| 成年偏黄全免费网站| 久久久91精品国产一区二区三区 | 亚洲国产精品久久久久福利| 免费AV在线播放| 在线观看国产小视频网站| 最新黄色网址在线观看| 日韩精品视频在线观看一区二区| 2022色婷婷综合久久久| 成人做爰A片免费看网站百丽| 久久久av一区二区三区| 欧美亚洲精品一区二区| 99久久极品少妇深夜福利| 亚洲中文字幕人成乱在线| 中文字幕淑女丝袜人妻在线| 四虎成人永久在线精品免费| 日韩三级视频在线观看| 大地资源_高清资源_中文| 日韩一级黄色录像| 末成年毛片在线播放| 天天狠天天天天透在线| 精品久久香蕉国产线看观看亚洲| 国产+精品+喷水| 国产色婷婷精品综合在线手机播放| 中文字幕永久视频| 日韩高清av免费在线观看| 中文字幕亚洲精品一区| 美女黄色视频网站入口在线看| 少妇高潮7777777丫乄| 国产精品综合在线| 国产va免费精品高清在线| 欧美亚洲国产片在线播放 | 美女成人亚欧色区视频网| 在线观看免费视频日本高清| 国产一区二区在线视频观看| 最新av网站免费在线观看| 成人免费毛片东京热| 亚洲AV日韩AV永久无码网站| 无码+护士+磁力链接| 人妻免费久久久久久久了| 秋霞伦理电院网伦霞| 中文在线观看免费高清电视剧 | 精品午夜福利在线观看| 亚洲无线码在线一区观看| 哈尔滨熟女白浆91九色| 窝窝影院在线播放免费观看电视剧| 欧美黑人xxxx又粗又长| 中文字幕日本亚洲欧美不卡 | 国产综合亚洲区在线观看| 免费在线观看视频a| 色婷婷一区二区三区四区| 日本无乱码高清在线观看| 日本人六九视频69jzz免费| 西西妺妺窝窝777777777| 欧美+成人精品+高清视频| 久久九九久精品国产| 在线看片免费人成视频国产片| 奇米第四色777| rmvb+下载+1080p| 精品无码成人片一区二区98| 98+亚洲+在线视频| 国产欧美一区二区三区午夜精品| 精品多毛少妇人妻AV免费久久| 久本草在线中文字幕亚洲欧美| 亚洲国内精品av五月天| 清纯唯美一区二区三区| 午夜精品一二三区| 国产人妻大战黑人20p| 午夜免费观看视频| √资源天堂中文在线| 国产在线拍揄自揄视精品按摩| 6080午夜福利视频在线观看免费| 久久露脸国语精品国产91| 欧美日韩综合精品无人区| 国产无套内谢普通话对白91| 在线а√天堂中文官网| 欧美精品久久久久久久久久| 国产乱码人妻一区二区三区四区 | а√天堂+地址+在线| 无码人妻精品一二三区免费| 国产三级在线三级久操欧美| 天堂网www在线最新版资源| 色88欧美日韩国产无线码| 精品免费国产一区二区三区四区介绍| 人与野鲁毛片在线视频| 国产精品成人精品久久久| 亚洲午夜精品一区二区国产| 搡老熟女老女人一区二区| 欧美牲交a欧美牲交aⅴ免费| 欧美日韩无线码视频在线播放 | 日韩v欧美v中文在线| 成人做爰视频www| 免费+国产+ktv| 少妇人妻偷人精品无码视频| 免费大香伊蕉在人线国产| 成在人线av无码免费看网站直播 | 亚洲午夜福利精彩视频在线观看| 污欧美视频在线免费观看| 午夜免费观看体验区入口av| 亚洲国产高清在线一区二区三区 | 亚洲一区二区美女在线观看| 人妻熟女一区二区aⅴ向井蓝| 狠狠躁夜夜躁人人爽天天开心婷婷| 国产成人午夜精华液| 波多野结衣无码一区二区| 在线观看一区二区三区四区| 欧美日韩国产成人综合在线影院 | 国产精品乱码久久久久久| 无码囯产精品一区二区免费| 成人动漫在线观看免费| 粗大猛烈进出高潮视频免费看| 欧美日韩中文字幕久久久不卡| 亚洲一区二区久久久| 亚洲无线码中文字幕在线| 嫩BBB槡BBBB槡BBBB18| 国产午夜av在线一区二区三区 | 成人+欧美+日本| 国产末成年av在线播放| 久久一本加勒比波多野结衣| 丁香色欲久久久久久综合网| 国产欧美在线观看不卡| 精品久久久久久中文墓无码| 亚洲欧美日韩中文字幕一区二区 | 久久久精品国产亚洲成人满18免费网站 | 少妇爆乳无码专区网站| 日本乱妇乱子视频| 久久99国产66精品久久| 精品国产污污免费网站入口自| 亚洲综合无码一区二区三区不卡 | 成人精品视频网站| 成人动漫在线观看免费| 妖精视频在线观看免费| 久久久久蜜臀va精品视频| 久久午夜无码鲁丝片秋霞| 亚洲精品乱码久久久久蜜桃| 九色视频在线免费观看| 国产成人精品免费久久久久| 日韩a无v码在线播放免费| 成人午夜片免费在线观看| 欧美黑人做爰爽爽爽| 午夜精品a片一区二区三区老狼| 2020亚洲欧美国产日韩| 在情趣店上班被爆cao翻了| 成人国产精品免费网站| 日本大片又大又好看的PPT模板视频| 四虎国产精品永久免费网址| 国产午夜精品一区理论片| 国产又粗又猛又黄又湿又爽视频 | 亚洲va在线va天堂xx| 国产亚洲欧美日韩在线三区| 欧美一区二区三区四区在线| 一边吃奶一边舔p好爽视频观看| 亚洲天堂成人在线观看| 成人乱淫av日日摸夜夜爽节目| 欧美激情中文字幕综合八区 | 精品国产乱码一区二区三区小黄书| 久久精品中文字幕一区二区三区| 91精品视频一区二区三区| 秋霞鲁丝片Av无码少妇| 情人伊人久久综合亚洲| 五月丁香综合激情| 精品国产美女av久久久久| 国产+jk制服+在线| 亚洲午夜精品一区| 久久天天躁狠狠躁夜夜躁综合| 久久成人人人人精品欧| 清纯唯美亚洲专区国产精品| 欧美一区二区三在线观看| 精品国产精品一区二区夜夜嗨| 亚洲国产精彩中文乱码av| 99久久久久久国产精品| 新的天堂在线观看视频免费| 亚洲+精品+无码视频| 久久伊人精品视频| 98+亚洲+在线视频| 国产色婷婷精品综合在线手机播放| 国产视频一区二区在线免费观看| 免费看的av网站| 日日摸夜夜摸狠狠摸中文字幕| 国产精品人人妻人人爽人人牛| 亚洲欧美日韩一本无线码专区 | 女人18a级毛片精品人妻| 午夜福利不卡在线视频| 成人年人免费看xxxxxxx| 国产精品中文字幕日韩精品| 少妇爽到呻吟的视频| 色综合天天综合天天摸天天爽 | 久久久久国产视频| 影音先锋+无码高清| 日产精品1区2区3区| 毛多水多丰满女人A片| 国产美女网站18禁| 13一16女处被毛片视频| 亚洲一区日韩在线| 一区一区三区产品乱码亚洲| 欧美xxxx做受欧美1314| 精品久久久久久中文无码| 国产精品呻吟av久久高潮| y111111111免费观看电视| 亚洲中文无码mv| 欧美麻豆精品久久久久久| 亚洲色欲色欲欲www在线| 欧美久久成人一区999| 18+韩国女主播青草| 99久久精品一区二区| 久久人人爽人人爽人人AV| 国产精品美女久久久久久久久 | 欧美色欧美亚洲日韩在线播放| 最近2018中文字幕在线视频| 亚洲精品无码播放| 中文字幕第一区综合| 国产一二三区精品亚洲美女| 免费+高清+在线观看| 中文字幕永久视频| 国产热a欧美热a视频在线观看| 欧美一区二区三在线观看| 免费观看成人毛片| 国产精品主播在线| 9.1入口nba在线观看免费| 中字幕久久久人妻熟女天美传媒| 原创婹农村熟女v88Av| 国产一区日韩二区欧美三区| 国产精品三级三级三级| 国产黄a三级三级三级av在线看| 成人做爰A片免费看网站百丽| 日韩精品手机在线| 色狠狠久久aa北条麻妃| 久久国产精品午夜福利影视| 波多野吉衣免费一区| 少妇人妻大乳在线视频| 亚洲精品在线免费播放| 五月婷婷综合在线观看| av天堂午夜精品一区二区三区| 国产成人综合欧美精品久久| 免费国产精品黄色一区二区| 韩国无码精品1区| 日韩欧美一区二区在线观看视频| 一个色综合国产色综合| 国产女子爆操高潮免费视频| 国产免费一级毛卡片AAAAAA级 | 日韩av在线第一页| 美女啊啊啊在线观看国产| 黑蝴蝶第一AV导航| 人妻+种子+磁力链接| 99精品偷拍在线中文字幕| 国产亚洲视频免费播放| 超清中文乱码字幕在线观看| 高潮+刺激+爽av| 国产精品久久网站| 国产麻豆一精品一男同| 熟妇精品一区二区三区四区| 亚洲成高清a人片在线观看| 午夜理论片yy8860y影院| 国产午夜福利精品一区二区三区 | www国产精品视频看看| 亚洲国产三级在线观看| 久久97超碰国产精品超碰| 久久久久久a亚洲欧洲av冫| 99久久伊人精品综合观看| 国产精品青青在线麻豆| 国产精品玖玖玖在线| 日本一级理论片在线大全| 精品国产91久久久久久动漫| 亚洲国产欧美在线成人aaaa | 欧美精品99久久久久久人| 日韩精品区一区二区三vr| 欧美一级在线a级在线视频| 69人妻精品丰满熟女区| 先锋+视频+国产精品| 无码人妻一区二区三区筱田优| 国产精品免费一区二区三区观看| 48手+真人+无码| av不卡国产在线观看| 少妇苏霞肉欲第501章| 色噜噜狠狠色综合日日| 国产三级aⅴ在在线观看| 国产午夜亚洲精品不卡下载| 亚洲中文十区字幕在线播放| 国产欧美日韩精品一区二区图片| 亚洲综合五月天婷婷丁香| 思思久热精品在线| 成人做爰A片免费看网站草莓 | 亚洲mv高清砖码区2022伊甸园| 台湾亚洲精品一区二区tv| 欧美色欧美亚洲另类七区| 亚洲精品久久久久久久久毛片直播| 久久精品国产精品国产精品黄| 国产成人精品免费高潮视频| 成人免费无遮挡无码黄漫视频| 国产成人精品免费视频| 国产精品精品久久久久久甜蜜软件| 国产精品久久久久久免费免熟 | 粉嫩美鮑国产一区二区| 全程露脸老熟妇双飞| 国产+激情+综合| 国产精品无套呻吟在线| 国产色A∨在线看精品| 美女免费高清观看影视大全| 亚洲а∨天堂+久久精品| 熟妇人妻无乱码中文字幕| 国产精品呻吟av久久高潮| 久久婷婷五月综合色国产免费观看| 成人无码一区二区三区网站| 国产精品午夜自在在线精品| 精品欧美一区二区精品久久| 黑茎大战欧美白妞高潮喷白欤| 亚洲精品一区二区三区四区高清| 亚洲+变态+欧美| 国产真人真事毛片| 国产视频又黄又粗又爽又猛| 久久精品麻豆一区二区三区美女| 无码人妻丰满熟妇啪啪网站| 精品国产美女福利在线不卡| 2020狠狠狠狠久久免费观看| 国产精品青草久久久久婷婷| 亚洲日韩av无码不卡一区二区三区| 羞羞色院91精品网站| 色狠狠成人综合网| 欧美激情视频免费| 中文字幕在线视频免费视频| 亚洲精品国产精品国自产小说 | 成人做爰A片免费播放乱码| 欧美日韩激情在线观看免费| 国产精品三级国产精品高| 国产亲子乱弄免费视频| 久久国产精品久久久久久电车 | 一夲到东京熬加勒比| 熟妇槡BBBB槡BBBB| 中文字幕在线视频第一区二区| 国产超碰人人做人人爽av大片| 图片区小说区视频区综合| 日韩av手机在线免费播放| 成人av片手机在线播放| 52avavjizz亚洲精品| 精品偷自拍另类在线观看| 丰满日韩放荡少妇无码视频| 日日躁夜夜摸月月添添添| 真人做爰a片免费观看茄子视频| 初撮八十路高龄老熟女| 波多野结衣美女中文字幕视频| 蜜臀国产在线观看激情网| 久久精品成人欧美大片| 国产女主播白浆在线观看| y1111111少妇影院| 亚洲永久精品国产xxxx| 亚洲欧美日韩国产成人精品影院| 亚洲一区二区三区四区在线播放| 99久久久精品免费国产| 日韩欧美国产一区二区三区久久| 超污视频在线观看| 亚洲欧美精品伊人久久| 国产+高潮+免费| 欧美亚洲国产日韩一区二区| 欧美日韩人成视频在线播放| 日本一区二区三区四区在线 | 欧美xxxx做受欧美1314| 一区二区三区在线播放| 神马影院手机在线电视剧传家电视剧| 国产又爽又黄又粗又硬视频| 免费av不卡在线观看| 国产在线视欧美亚综合| 日韩黄a三级三级三级看三级少妇| 337p日本欧洲亚洲大胆| 国产精品久久99精品毛片三a| 中文亚洲精品字幕在线观看| 国产激情视频在线播放| 公侵犯美丽人妻一区二区| 欧美亚洲国产手机在线观看| 国产精品好好热av在线观看| 国产成人精品免费视频大全最热| 亚洲成a人一区二区三区| 麻豆美女丝袜人妻中文| 精品欧美国产一区二区三区| 精品久久国产字幕高潮| 亚洲精品国产乱码不卡在线观看| 丁香花小说手机在线观看免费 | 国产真实露脸精彩对白 | 熟妇人妻av中文字幕老熟妇| 亚洲精品久久久久久久久毛片直播| 合不拢腿(双)by粗眉毛免费朗读| 久久精品国产亚洲av水果派 | 国产亚洲精品香蕉网九色| 日韩高清在线亚洲专区小说| 91视频中文字幕| 国产精品免费观看调教网| 日韩欧美国产另类久久久精品| 国产精品国产三级国产不产一地| 欧美激情videos| 91麻豆短视频免费观看| 69久久夜色精品国产69蝌蚪网| 国产人交视频xxxcom| 亚洲+激情+专区| 亚洲国产精品自在线一区二区| 亚洲免费视频一区二区| 成人做爰a片b站| 制服师生中文字幕一区二区| 国产目拍亚洲精品99久久精品 | 青青青免费在线视频亚洲 | h狠狠躁死你h八十年代| 波多野结衣之欲乱护士| 国产农村一国产农村无码毛片 | 成人无码精品1区2区3区免费看| 天天色香色欲影视| 久久久精品人妻久久影视| 久久久激情一区二区三区| 亚洲成人在线播放| 美女十八禁在线无遮挡免费看 | 亚洲国产精品尤物yw在线观看| 善良娇妻让公泄欲| 精品无人区麻豆乱码1区2区| 草色噜噜噜av在线观看| 最新黄色在线观看一区二区三区| 三级欧美韩日大片在线看| 日韩精品亚洲人成在线观看| 国产精品点击进入在线影院高清| 狠狠综合久久久久尤物丿| 国产在线麻豆在拍91精品| 精品96久久久久久中文字幕无| 1024精品久久久久亚洲| 中文日韩欧免费视频| 欧美亚洲精品一区二区| 成人免费福利片在线观看| 精品久久久久国产一区二区| 亚洲女同精品一区二区| 国产麻传媒精品国产AV| 少妇毛片一区二区三区| gogogo高清在线观看+视频| 亚洲精品美女久久久久网站| 亚洲+欧洲+国产中文字幕| 亚洲人av在线影院| 妇女嫩BBB揉BBBBBB搡| 国产av大陆精品一区二区三区 | 亚洲第一视频在线| 精品女同一区二区三区免费站| 神马影院手机在线观看| 国产精品青草综合久久久久99| 国产+欧美+日韩在线| 精品亚洲精品第—区| 亚洲高清成人aⅴ片| 无码少妇一区二区三区免费| 全程露脸X88AV| 99国产热精品主播在线观看| 有码+日韩+在线观看| 精品久久亚洲中文字幕| 日韩三级视频在线观看| 亚洲第一综合网站| 亚洲国产精品久久久久秋霞小 | 人妻丰满熟妇av滝川恵理| 91亚洲欧美中文精品按摩| 亚洲+视频+免费| 日韩18中文字幕欧美在线| 国产ae86亚洲福利入口| 搡老岳熟女国产熟妇| 国产精品亚洲精品一区二区| 国产+在线观看+免费| 末成年毛片在线播放| 国产精品熟妇一区二区三区四区| 免费+无码+av网| 国产精品一区二区久久| 521av在线视频中文字幕| 国产午夜精品久久久久免费视| 久久99热这里只有精品国产| 精品无码综合一区二区三区| 辽宁熟女高潮狂叫视频| 最新国产av最新国产在钱| 中国美女毛片视频免费看| 成人在线视频网址| 男人激烈吮乳吃奶视频免费 | 91高清在线视频| 亚洲Av日韩精品久久久久 | 亚洲l码和欧洲m码的区别| 人妻仑乱少妇a级毛片| 亚洲午夜久久久影院| 美女视频图片久久黄网站| 一级午夜黄色视频| 全黄久久久久a级全毛片| 亚洲欧美日韩国产综合一区小说| 亚洲成综合人影院在院播放| 牛牛视频一区二区三区| 亚洲人成在线播放网站| 亚洲日韩精品成人无码专区AV| 欧洲精品欧美精品| 日本老熟妇乱子伦精品| 亚洲精品国产嫩草在线观看免费 | www.少妇影院.com| 中文字幕精品亚洲无线码一区| 激情+高潮+国产| 中文字幕一二三区波多野结衣| 国产欧美大片一区二区三区 | 亚洲欧美另类综合| 人妻av中文无码| 一区二区三区91| 国产真实自在自线免费精品 | 精品国产第一区二区三区有码| 国产福利一区二区手机观看 | 国产日韩精品一道在线观看| 樱花在线视频免费观看电视剧| 大家可以在这里国产一级淫片a视频免费观看 | 农村末发育av片一区二区| 99er热精品视频| 少妇人妻偷人精品视频免费| 91精品国产人妻国产毛片在线| 国产女同一区二区在线观看| 国产+麻豆+免费| 久久一区二区三区四区| 韩国主播av福利一区二区| 欧美精品亚洲日韩aⅴ| 授乳喂奶av中文在线| 久久天天躁狠狠躁夜夜躁综合| 黄色视频国产免费观看| 午夜爽爽爽男女免费观看一区二区| 91精品综合久久久久久五月天| 精品一区二区三区三区| 少妇荡乳情欲办公室毛片一区二区 | 国产精品一区在线蜜臀av| 窝窝影院在线观看免费播放电视剧| 欧美视频精品免费覌看| 天天爽夜夜爽视频精品| 国产又粗又黄的视频免费| 亚洲人成伊人成综合网小说| 精品乱码久久久久久久| 久久亚洲欧美日韩精品专区| 无码人妻一区二区三区尽卡亚| 337p日本欧洲亚洲大胆| 欧洲精品视频在线| 中文字幕欧美精品一区二区三区 | 粉嫩一区二区三区| 日韩精品人妻2022无码中文字幕| 99精品视频九九精品视频| 大地资源中文一二三页的特点| 国产一级av国片免费| 在线观看国产精品冒白浆| 丰满岳乱妇三级高清| 国产精品自拍合集| 在线观看免费www| 韩国中文字幕在线观看| 99视频在线精品免费观看6| 亚洲日韩精品一区二区三区| 在线播放av网站| 色综合图区av网站| 国产精品精品久久久久久甜蜜软件| 国产末成年av在线播放| 亚洲精品国产中文字幕在线| 高潮+白浆+国产| 少妇高潮流白浆在线观看| 高清+免费+国产| 亚洲国产成人综合| 久久婷婷五月综合色99啪| juliaannxxxxx高清| 国产精品99久久久久久董美香| 在线观看av网站永久免费观看| 日韩黄a三级三级三级看三级少妇| 国内少妇高潮嗷嗷叫在线播放 | 不卡av中文字幕| 精品美女www爽爽爽在线| 久久精品国产欧美日韩亚洲| 日韩免费码中文在线观看| 啪啪视频最新地址发布页| 丰满大乳班主任趴下让我玩视频| 精品国产第一区二区三区有码| 最新国产精品拍自在线观看| 欧美视频一区二区三区福利| 扒开女人内裤猛进猛出流出白液| 五月狠狠亚洲小说专区| 国产又粗又爽又猛又大的动漫片 | 久久精品国产欧美日韩亚洲| 久久男人高潮av女人天堂| 中文字幕在线熟女人妻| 058被黑人中出| 成年偏黄全免费网站| 色678黄网全部免费| 9.1入口在线观看免费| 国产又大又猛又粗视频在线观看| 9l国产精品久久久尤物av| 国产国产精品久久久久久久| 99久久夜色精品国产亚洲a| 300部大龄熟乱视频| 精品亚洲中文字幕东京热网站| 大香蕉国产在线视频| 国产乱妇交换做爰XXXⅩ麻豆| 近親伦一区二区三区| 巜按摩泄欲中文字幕| 国产又粗又长又猛黄色视频| 丰满美女一级视频一区二区三区 | 重庆美女揉BBBB搡BBBB| 玩弄少妇高潮a片水蜜桃网站| 久久精品无码手机观看| 亚洲国产剧情在线精品视| 国产成人一区视频在线播放 | 免费全部高h视频无码软件| 亚洲s久久久久一区二区| 国产精品三级一区二区| 小黄鸭+av导航+在线| 蜜乳av中文字幕| 欧美日韩国产激情一区二区三区| 国产婷婷av片在线观看| 国产在线国偷精品产拍| 天天躁日日躁狠狠躁伊人| 红莲两瓣夹玉柱最经典四句话| 影音先锋+在线+国内| 视频一区二区中文字幕在线 |