精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請(qǐng)自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

av天堂午夜精品一区二区三区| 午夜福利国产精品久久| 国产精品美女久久久久av爽| 国产av天堂一区二区三区粉嫩 | 992tv成人国产福利在线观看| 成人国产免费视频| 国产69久久久欧美一级| 国产精品久久久久久久久久久免费看 | 日本高清色本在线WWW| 国产乱公伦媳在线播放| 亚洲精品国产主播在线三区| 痴汉电车人妻被内谢下面很多水 | 欧美精品少妇videofree720| 国产精品不卡av| 日日躁你夜夜躁你av蜜| 日韩欧美成人免费观看| 亚洲AV成人片无码| 欧美成人在线网站| 99热这里有的只是精品| www+制服丝袜+美女| 秋霞无码久久一区二区| 又色又爽又黄还免费视频| 日本欧美成人片AAAA| 国产精品久久久久av一区| 强奷漂亮少妇高潮麻豆| 久久免费的精品国产v∧| 草草影院ccyy国产日本欧美| 免费无码一区二区三区蜜桃| 让少妇高潮无乱码高清在线观看| 久久久久久久久久久久中文字幕| 在线观看国产小视频网站| 高潮+喷水+白浆| 鲁大师影视在线观看高清免费 | 手机+在线+精品| 东北中熟妇高潮50分钟| 中文字幕视频在线欧美一区| 中文字幕韩国欧美视频在线| 日韩国产精品视频| 曰韩亚洲av人人夜夜澡人人爽| 国产精品欧美一区二区三区奶水| 五月综合激情婷婷六月色窝 | 国产一区二区四区在线观看| 精品美女自拍99RE热视频这里只精品| 亚洲精品久久久97精品久久久久亚洲午夜| 影音先锋+写真+日韩| 一本加勒比HEZYO爆乳| 无码AV免费一区二区三区试看| 搡老熟女老女人一区二区| 亚洲欧美日韩中文久久 | www日本com| 国产高清狼人香蕉在线| 初撮熟女撮り老女人| 久久免费黄色网址| 欧美亚洲国产片在线播放| 中文字幕一区二区在线免费观看| 日韩一区二区av网站在线观看 | 久久综合狠狠狠综合图片| 国产极品白嫩精品| av片子在线观看| 中文字幕乱码中文ktv| 国产传媒精品1区2区3区| 337p日本欧洲亚洲大胆| 国产毛片一区二区三区| 亚洲AV无码久久久久网站蜜桃| 国产又粗又黄又硬又爽的毛片 | 欧美人牲交a欧美精区日韩| 国产99视频精品免视看芒果| 国产不卡在线播放| 视频一区视频二区制服丝袜| 40岁成熟女人牲交片| 丰满人妻熟妇乱又仑精品| 在线看片人成视频免费无遮挡| awww在线天堂bd资源在线| 淫语骚话高潮脏话HD| 精品国产亚洲一区| 熟妇乱子伦海角社区 | 红莲两瓣夹玉柱最经典四句话| 色噜噜人妻丝袜av先锋影音先| 亚洲国产精品久久一线app| 免费+日本+国产| 国产一区日本二区在线观看| 日韩欧美+亚洲+国产| 在线观看日韩欧美综合黄片| 中文字幕欧美精品一区二区三区 | 国产成人a在线观看网站站| av免费在线观看不卡| 91精品国产高清一区二区三区蜜臀| 久操视频在线播放| 国产乱人伦精品一区二区_国产91在线| 中文字幕日韩一区二区三区不卡| 久久婷婷五月综合色一区二区| 亚洲专区中文字幕| www国产+欧美| 欧美国产中文字幕在线视频| 欧美日韩一区在线播放| 按摩轻轻挺进人妻| 黄色欧美在线观看| 摸进她内裤里疯狂揉她的桃子视频| av免费在线观看一区不卡| 久久久久久久久女人体| 国产麻豆一精品一男同| 欧美乱子伦一区二区三区| 四虎国产在线观看| 国产免费不卡av黄色一级片| 青青草免费在线视频| 亚洲情a成黄在线观看动| 精品视频中文字幕| 日本福利视频一区| 日韩人妻无码一区二区三区综合| 日本一二三不卡精品视频免费| 国产精品久久久久成人| 日韩亚AV无码一区二区三区| 一本色道久久综合狠狠躁邻居| 大地二资源网高清免费播放| 韩国和日本免费不卡在线v| 成人乱淫av日日摸夜夜爽节目| 亚洲精品久久久久久蜜臀| 色网站在线观看视频| 你懂的国产高清在线播放视频| 日本xxxxl码在中国是几码| 国产精品一区二区久久精品| 欧美成人中文字幕| av天堂亚洲av午夜一区| 91精品日产一二三区乱码| 国产精品一区在线蜜臀av| 国精品午夜福利视频2021| 干离异富婆的骚B| 91资源新版在线天堂成人| 老a影视精品无码视频 | 破了女学生小嫩苞A片| 国产高清av免费在线观看| 麻豆专媒体一区二区| 无码丰满熟妇一区二区| 色偷偷人人澡人人爽人人模麻豆| 国内高清a自拍视频| 熟妇人妻无码xxx视频| 超碰+国产+在线| 大胆欧美高清videosedexohd| 国产美女久久久亚洲综合| 国内精品自线一区二区三区| 国产精品白丝美女免费在线观看| 四虎国产精品成人免费影视| 国产精品久久久久久三级| 岳把我添高潮了A片m3u8| 久久精品国产免费看久久精品| 五月天婷婷缴情五月免费观看| 久久夜色精品国产噜噜亚洲SV| 成人午夜片免费在线观看| 75歳の熟女セックス合集牛牛| 国产免费国语一级特黄aa大片| 国产丨熟女丨国产熟女视频 | 亚洲欧洲日产国码中学| 东京亚洲女图片在线观看| 日韩视频在线观看免费| 国产在线高清精品二区| 成人免费观看视频大全| 曰韩亚洲av人人夜夜澡人人爽| www国产+欧美| 精品999久久久久久中文字幕| 日韩欧美中文字幕在线视频四区| 精品伊人久久久99热这里只| 中文字幕乱偷在线小说| 国产精品原创不卡在线| 黄色视频国产免费观看| 亚洲人妻在线播放| 国产精品一级AA毛片不收费| 婷婷在线精品视频免费观看| 国产无遮挡又黄又爽在线视频 | 欧美专区日韩视频人妻| 又黄又粗又爽的免费视频| 手机av在线免费| 中文字幕欧美日韩va免费视频| 中文字幕乱偷无码av先锋蜜桃| 天堂aⅴ无码一区二区三区 | 国产美女免费无遮挡网站| 欧美日本韩国区一区二视频 | 大战熟女丰满人妻AV| 欧美精品videossex少妇| 精品国产乱码久久久久久浪潮小说| 一本色道久久精品| 久久久久久国产精品美女| 精品日韩在线播放| 日韩欧美一区二区在线观看视频| 日韩在线看片免费人成视频播放| 亚洲国产精华液网站w| 视频一区二区中文字幕在线 | 少妇爆乳无码专区| 亚洲一区二区三区无码影院| 俺去俺来也www色官网cms| 阿v天堂一区二区在线观看| 懂色av蜜臀av粉嫩av分享吧最新章节 | 国产精品久久久精品三级18禁| 国产美女遭强高潮网站一区二区| 国产乱码精品一区二区三 | aaaaaa毛片| 色偷偷人人澡人人爽人人模| 在线aⅴ亚洲中文字幕| 精品国产自在在线午夜精品 | 亚洲国产精品久久一线app| 这里只有精品国产| 色视频免费在线观看| 这里只有精品国产| 午夜福利理论片高清在线| 在线观看国产精品冒白浆| 日韩欧美亚洲精品在线播放| 亚洲精品美女久久久久9999| 国产女人久久精品视| 视频一区视频二区制服丝袜 | 亚洲欧美日韩国产综合一区小说 | 尤物网站视频免费看| 五月天久久久久久九一站片| 另类天堂网不卡另类系列| 欧美综合婷婷欧美综合五月| 人妻少妇精品久久久久久| 色噜噜www亚洲男人天堂| 欧美日韩国产专区一区二区| 猫咪www免费人成网站无码| 亚洲mv高清砖码区2022伊甸园| 欧美日韩福利视频一区二区| www.国产成人在线免费看| 中文字幕一区二区三区5566| 18+在线观看视频| 在线成人+欧美+一区二区三区| 国产精品鲁丝av一区二区| 国产精品视频+白浆+免费视频| 中文字幕日本在线| 疯狂欧美大伦交乱| 少妇高潮喷水久久久久久久久久| 日本精品在线播放| 欧美+成人精品+高清视频 | 97国语精品自产拍在线观看 | 免费精品成人在线永久观看| 99在线成人精品视频 | 亚洲日韩av无码不卡一区二区三区| 一本大道大臿蕉视频无码| 人妻+综合+激情| 欧美激烈精交gif动态图| 国内国产精品久久久亚洲w码| 热久久这里只有精品| 若妻~夫の肉欲中文字幕| 国产精品成人**免费视频| 屁屁国产第一页草草影院| 久久免费观看视频| 国产成人一区二区三区久久精品| 国产精品青草综合久久久久99| 欧美激情内射喷水高潮| 亚洲综合欧美精品一区二区| 国产精品亚洲欧美一区二区| 日本69式三人交| 欧美三级欧美成人高清www| 一卡二卡不卡免费视频观看| 中文字幕乱码亚洲无线三区| 贵州小少妇BBAABBAA视频| 欧美精品在线观看第一页| 亚洲精品天天影视综合网 | 国产成人高清在线观看视频| 琪琪在线影院电视剧免费| 国产精品卡一卡二卡三| 天天+来吧综合+亚洲| 国产1024成人精品视频| www九九热com| 成年人视频免费在线观看| 裸体+国产+免费| 精品亚洲成熟女人www| 国产高清在线不卡| 国产在线乱码一区二三区| 九九九久久久精品| 四虎精品在线播放| 最近中文字幕免费mv视频| 大地资源二中文官网| 青娱乐国产盛宴视频在线观看| 国产免费一级淫片a级中文| 免费成人在线网站| 亚洲+国产+专区| 一区一区三区四区产品动漫| 亚洲Aⅴ成人精品一区二区三区 | 中文字幕乱码av一区二区三区| 少妇与黑人xoyyyyy视频| 久久精品国产久精国产果冻传媒 | 国内女人喷潮完整视频| 八戒青柠影院观看免费高清电视剧| 已满十八岁免费观看电视剧软件下载 | 天天澡天天揉揉av无码| 国产精品自产拍在线观看中文| 3p人妻少妇对白精彩视频| 国产女人18毛片水18精品软件| 视频精品一区二区| 自拍视频国产三级| 亚洲视频十八禁在线无遮挡| 影音先锋+在线+2| 日韩亚洲国产欧美精品久久 | 国产乱码一区二区三区观看| 国产亚洲精品福利视频| 老a影视精品无码视频| 日韩中文字幕在线观看| 久久久久久国产精品免费看| 欧美天堂一区二区三区| 美女高清久久久久久小视频| 国产高清视频在线播放www色| 亚洲产大香伊人蕉在线播放| 日本黄色激情视频| 亚洲美女黄色一级啪啪视频| 羞羞影院午夜男女爽爽免费| 男人操女人免费看网站亚洲欧美| 国产欧美日韩综合在线成| 免费+高清+国产| 午夜精品一区二区不卡二卡| 99国产精品18久久久久久| 国产精品一级AA毛片不收费| 中文字幕在线播放第一页| 日韩av大片在线观看| 欧美一区二区三区午夜视频| 人妻无码免费一区二区三区| 日韩精品一区二区在线观看网址 | 亚洲国产高清在线一区二区三区| 1000部羞羞视频在线看视频| 91精品人妻麻豆一区二区| 在线观看+成人免费视频+不卡 | 91麻豆国产福利在线观看| 欧美不卡在线观看| 丰满女人无套内谢| 久久国产精品久久国产精品99| 欧美大片一区二区三区视频 | 国产亚洲精品第一综合不卡| 妺妺窝人体色777777小馒头| 中文字幕无线乱码人妻| 真人床震高潮全部视频免费| 免费无遮挡在线观看视频网站| 国产男女视频在线免费观看| 在线播放五十路熟妇| 国产精品欧美久久久久久日本一道| 福利视频中文字幕一区二区| 无套内谢少妇在线观看视频| 国产精品久久久久久久模特人妻| 新大地资源在线影视观看| 久久精品国产精品亚洲下载| 被老师粗大jib捣出了白浆视频| 成年人午夜免费视频| 99久久极品少妇深夜福利| 亚洲日本乱码一区二区三区 | 99精品+麻豆+国产| 无码少妇高潮浪潮av久久| 98av精品一区二区三区| 欧美国产激情一区二区三区| 一区精品视频在线观看免费| 亚洲精品一二三区| 美女黄色视频网站入口在线看| 东北少妇BBBB搡BBB搡| 国产精品久久久久久亚洲影视公司 | 国产+高潮+刺激| sao货妓女的yin荡生活| 亚洲精品无码播放| 五月丁香久久丫婷婷一区不卡| 精品视频在线观自拍自拍| 精品欧美一区二区免费久久久| 国产精品午夜自在在线精品| 丰满大乳奶做爰ⅩXX视频| 成人免费黄色大片| 精品国产乱码久久久久久影片| 90岁老太婆乱淫| 日本一级待黄大片| 色综合久久久久综合99| 四十路の高齢熟妇无码| 99精品偷拍在线中文字幕| 另类内射国产在线| 亚洲一区国产一区| 国产传媒在线播放| 无码AV波多野结衣久久| 欧美日韩亚洲tv不卡久久| 久久精品+中文字幕+有码| 神马久久久久久久久久久| 成人av一区二区兰花在线播放| 国产在线精品一区二区三区不卡| 好爽…又高潮了毛片| 你懂的国产高清在线播放视频| 水菜丽+sm+磁力链接| 国产精品一区二区三区九一麻豆| 福利视频一区二区三区四区 | 亚洲精品成人a8198a| 日韩欧美aaaa羞羞影院| 国产日韩欧美系列一区二区| 亚洲AV日韩AV无码黑人| 欧美日韩国产在线人成| 日韩三级片在线播放| 洗濯屋+无码+迅雷| 无码+成人+种子下载| 国产精品久久久久久妇女+八| 国产又粗又黄又硬又爽的毛片 | 欧洲精品视频在线| 久久婷婷综合99啪69影院 | 国产精品成人一区二区三区吃奶| 青草青草久热国产精品| 色偷偷人人澡人人添老妇人| 亚洲美女高清无水av| 国产毛a片啊久久久久久保和丸| 人妻无码av一区二区三区精品| 激情无码人妻又粗又大中国人| 一级香蕉视频在线观看| 中字幕一区二区三区乱码| 日本欧美国产在线视频一区| 国产又粗又黄的视频免费| 成人精品日韩一区二区蜜臀| 国产一级片免费观看| 农村乱子伦毛片国产乱| 久久精品国产亚洲精品| 女人同房高潮后松手能恢复吗| 亚洲一区二区三区av免费| 欧美日韩亚洲国产九色91| 91av精品一区二区三区| 中文字幕三级在线视频一区二区| 精品亚洲精品第—区| 偷柏自拍亚洲综合在线| 久久一本加勒比波多野结衣| аⅴ天堂中文在线网| 美足+丝袜+影音先锋| 国产精品久久久久久久久久吹潮| 国产中年熟女高潮大集合| 男人a天堂手机在线版| 2019久久视频这里有精品15| 色婷婷五月综合亚洲小说| 91n免费处女在线| 少妇内射兰兰久久| 四虎影视国产精品永久在线| 精品国产一区二区三区久| 亚洲av日韩av东京热| 粗大的内捧猛烈进出少妇| 亚洲视频在线免费| 爆乳亚洲一区二区'| 高湖毛片7777777毛片| 亚洲国产日韩欧美愉拍精品| 亚洲?V无码成人动漫无遮挡| 亚洲欧美日韩视频一区二区| 中文字幕亚洲图片| 色噜噜www亚洲男人天堂| 亚洲一区二区三区高清在线看| 久草在线免费资源| 成人一区二区在线播放| 在线观看国产一区二区av| 中文人妻av久久人妻18| 永久免费未满蜜桃| 丰满双乳峰白嫩少妇成人网站| 九九综合va免费看| 欧美在线99香蕉在线视频| 超碰伊人久久大香线蕉综合| 中文字幕+乱码+高清| 国产在线观看免费高清电视剧大全| 亚洲国产精品第一区二区三区| 伊人久久大香线焦av综合影院| 国产亚洲精品久777777| 欧美成人乱码一区二区三区| 亚洲va久久噜噜噜久久| 一区二区免费欧美| 国产欧美日韩视频怡春院| 久久亚洲私人国产精品| 精产国品一二三产品麻豆| 午夜免费一区二区三区视频| 91av在线视频观看| 国产成人在线公开免费视频| 少妇激情偷人三级| 亚洲午夜福利精彩视频在线观看| 亚洲福利视频在线| 日本猛少妇色xxxxx猛叫| 国产精品一区波多野结衣| 最新69国产成人精品视频| 无码精品人妻系列| 人妻中文在线一区二区三区| 大尺度做爰黄9996片视频| 国产精品久久久久久久久久| 亚洲va欧美va国产综合久久 | 欧美超猛烈一区二区三区| 日韩精品内射视频免费观看| 国产成人啪精品视频网站| 国产资源在线观看| 国产精品99久久久久久有的能| 国产毛片乡下农村妇女bd| 国产+白浆+免费| 国产日韩欧美精品| 日韩精品视频主播在线播放| 东北高大丰满BBBBzBBB| 久久天天躁狠狠躁夜夜97| 波多野结衣绝顶高潮喷水| 无遮挡又色又刺激的视频+黄| 国产精品一卡2卡三卡4卡| 亚洲+熟女+丝袜| 在线播放真实国产乱子伦| 朝鲜女人大白屁股ass| 国产无套粉嫩白浆内的人物介绍| 亚洲欧美日韩第一页| 一区二区三区不卡在线观看| 小s货又想挨c了叫大声点男男| 欧美老妇胖老太xxxxx| 91中文字幕在线视频| 国产精品露脸国语对白| 亚洲第一成人av| 欧美成人a免费在线观看| 亚洲天堂2017无码| 日本老熟妇乱子伦精品| 亚洲已满18点击进入在线看片| 中文字幕亚洲精品无码| 99久久亚洲综合精品成人网| TokyoKoT大交乱| 天堂√最新版在线| 无套内谢少妇在线观看视频| 日本乱偷互换人妻中文字幕| www九九热com| 视频在线一区二区| 久久精品人人做人人爽| 真人做爰高潮全过视频| 国产男女猛烈视频在线观看麻豆| 成人精品日韩一区二区蜜臀| 天堂а√在线中文在线新版| 国产+高潮+免费视频| 91亚洲国产成人精品久久久 | 午夜福利精品kkk在线| 啪啪网站免费观看无需下载| 久热99精品视频免费观看免费| 无码av中文一区二区三区| 国产亚洲精品久久久久久大师| 欧美激情精品久久久久久多人| 亚洲成人AV在线| 亚洲欧洲中文日韩久久av乱码| 手机无码人妻一区二区三区免费 | 久久视频这里有久久精品视频11| 亚洲中文字幕无码爆乳AV| 啊灬啊灬轻点第一次和外国人 | 欧美三级韩国三级日本播放| 国产av巨作丝袜秘书| 国产精品久久精品免费视频| 加勒比HEZYO黑人专区| 亚洲国产一区二区在线| 无码av永久免费专区麻豆| 久久老子午夜精品无码怎么打| 久久精品国产99久久久| 91久久精品国产| 国产在线看片免费观看| 又粗又硬又黄的国产视频| 痴女+巨乳+熟女| beeg+欧美+丰满| 国产乱公伦媳在线播放| 辽宁熟女高潮狂叫视频| 在线观看av一区| 日本五十肥熟交尾| 99久久免费视频在线观看| 黄色片网站在线播放| 衣服被扒开强摸双乳18禁网站| 久久人人爽人人爽人人AV| 国产精品国产馆在线真实露脸| 国产精品99一区二区三区| 人妻无码一区二区19p| 又粗又黄又爽视频免费看| 亚洲精品国产一区二区在线观看| 成人做爰A片免费观看软件| 五十路の完熟豊満无码| 亚洲中文字幕乱码av波多ji| 国产成人亚洲精品青草| 国产精品不卡av| 国产70老熟女重口小伙子| 成全在线观看免费完整| 国产无套普通话对白| 最新版天堂资源中文在线| 91精品视频一区二区| 老子影院在线观看理论片| 做受不用下载在线观| 国产精成a品人v在线播放| 中文有无人妻vs无码人妻激烈| 久久精品免费全国观看国产| 国产超级a视频免费观看| 黑丝+国产+在线视频| 欧美激情videos| 免费+高清+国产| 欧美a中文字幕在线播放| 国内精品偷拍视频| 日韩在线视频在线观看| 日本高清在线不卡一区二区| 天堂网www中文在线| 国产欧美日韩精品一区二区三区| 日韩欧美在线一区| 少妇精品偷拍高潮少妇小说| 国产成人午夜精华液| 妺妺窝WWW仙踪林粗大野| 国产精品久久久久久久久久吹潮| 日韩丰满少妇无吗视频激情内射| 欧美成人aaaaaaaa免费| 亚洲中文字幕乱码av波多ji| 久久99精品久久久久久噜噜| 99久久无码一区人妻a片蜜| 欧美日本二区三区四区人气| 欧美激情精品久久| 波多野结衣亚洲视频| 亚瑟女厕盗摄视频大全| 国产成人短视频在线观看| 热久久这里只有精品18| 国产亚洲制服丝袜一区二区| 欧美日韩一级片在线免费观看| 日本+欧美+专区| 中文字幕少妇欧美高潮迭起| 国产女人18毛片水18精品软件| 人人妻人人澡人人爽欧美一区双 | 国产素人激情在线观看网址| 亚洲熟妇AV日韩熟妇在线| 黄网站色视频免费观看美女 | 精品美女视频在线观看免费| 日本一道综合久久aⅴ久久| 国产+高潮+精品| 国产免费网站在线观看| 国内精品伊人久久久久av一坑| 天堂av2020| 色欲AV无码一区二区三区| 免费一级欧美片在线观看欧美| 国产精品色婷婷久久99精品| 中国猛少妇色xxxxx| 日韩在线观看视频精品资源| 99热热久久这里只有精品| 国产+传媒+国产av| 久久久国产免费观看视频| 国产白丝jk捆绑束缚调教视频| 国产精品无套呻吟在线| 污18禁污色黄网站免费观看| 日韩+国产+在线高清| 日韩久久久久久久久久久| 变态另类天上人间| 特级特黄AAAAAAAA片无锁| 国产精品女同一区三区五区| 中国农民工hd自拍xxxx| 久久99热只有频精品8国语| 天津熟女干部高潮尖叫| 国产又粗又猛又爽视频上高潮| 久艾草在线精品视频在线观看| 国产在线观看欧美二区三区| 日韩激情免费视频一区二区| 精品一区二区三区无码免费直播| 国产网红美女自拍小视频网址| 国产熟女高潮精品视频区| 欧美三日本三级三级在线播放| 欧美日韩国产一区二区三区精品 | 国产伦精品一区二区三区照片| 日韩人妻不卡一区二区三区| 黄网在线免费观看| 91色老头与人妻中文字幕视频| 国产亚洲综合欧美一区二区| 亚洲乱码日产精品bd在观看| 风韵犹存大屁股99AV| 国产免费人成视频在线观看| 精品不卡一区中文字幕| 婷婷91麻豆精品国产红杏| 中文字幕av手机版| 无码AⅤ精品一区二区三区| 中文字幕+乱码+中文字幕电视剧| 欧美麻豆精品久久久久久| 欧美黑人一区二区| 国产+激情+在线观看| 亚洲色18禁成人网站www| 国产丨熟女丨国产熟女视频 | 久久久久久人妻精品一区二区三区| 精品人妻艳妇嫩草AV少妇| 亚洲视频在线播放一区二区三区| 五月天激情久久久| 久久久久青草线蕉综合超碰| 亚洲日韩国产欧美一区二区三区| 少妇爆乳无码专区| 久久精品国产久精国产果冻传媒| 91n免费处女在线| 国产成人午夜精华液| 精品一区二区三区自拍图片区| 18+av在线免费| 污污内射在线观看一区二区少妇| 午夜久久久久久久| 亚洲伦无码中文字幕另类| 欧美日韩亚洲视频一区二区三区| 韩国真做片在线观看国产初高中生videos| 先锋影音av最新资源 | 国产精品人人妻人人爽人人牛| 国产在线观看免费高清电视剧大全| 欧美成人精品一级乱黄| 国产999久久高清免费观看| 天堂bt种子在线最新版资源| 亚洲成在人线天堂网站| 欧美日本一道本一区二区中文| 中文字幕永久免费| 欧美污视频免费在线观看| 天天天欲色欲色www免费| 久久影视久久午夜| 无码人妻丰满熟妇区网站| 国产精品主播一区二区三区| 免费国产精品一区二区三| 野花视频最新免费| 国产精品黄色av| 丰满的女人一区二区三区| 亚洲a∨精品一区二区三区| 欧美色视频在线观看| 台中文娱乐网22ww| 中字幕一区二区三区乱码| 一区二区三区四区亚洲| 国产精品国产av国产三级| 亚洲色成人中文字幕网站| 国产又大又硬又粗的视频| 久久国产精品久久w女人spa| 天堂www天堂在线资源网| 中文字幕在线看高清好看的电视剧| 国产亚洲精品久久www| 亚洲视频一区高清在线观看| 国产精品久久久久久久模特人妻 | 国产精品国产馆在线真实露脸| 亚洲欧洲免费黄色视频| 久久露脸国语精品国产91| 久久国产精品久久国产精品99| 国产+麻豆+免费| 青草av.久久免费一区| 久久久欧美国产精品人妻| 麻豆日产精品卡2卡3卡4卡5卡| 久久综合88中文字幕| av无码av天天av天天爽仙踪林| 亚洲视频精品久久久| 日日摸日日碰人妻无码| 国产伦子伦对白在线播放观看| 你懂的网址亚洲精品在线观看| 国产精品污污在线观看入口| 国产欧美色一区二区三区| 亚洲美女黄色一级啪啪视频| 99re在线观看视频在线观 | 66国产在线一区二区三区| 午夜福利视频二区| 国产精品久久久久久av福利| 国产91麻豆一区二区在线| 国产一级淫片免费放大片| 爆乳熟妇一区二区三区霸乳| 成人乱人伦视频在线观看| 久久96热在精品国产三级| 国产免费网站在线观看| 国产三级国产精品专区50| 痴汉电车人妻被内谢下面很多水| 国产探花视频在线观看网址| 国产精品永久免费av观看| 日本欧美国产一区二区在线观看| 美丽的小蜜桃《美剧》| 黑人按摩人妻HD中字5| 西西GoGoGo高清在线完整版| 麻豆人妻换人妻好紧| 亚洲+变态+欧美| 一区二区三天美小说| 亚洲Av乱熟妇A片大全| 国产精品中文字幕日韩精品| 五月综合激情婷婷六月色窝| 嗯高阿宾福利视频| 中文字幕+人妻+少妇| 91亚洲国产成人精品久久久| av黄网站免费永久在线观看| 日日操日日射日日摸欧美| 国产免费网站在线观看| 一个本道久久综合久久88| 国产精品伦一区二区三级视频永妇| 亚洲s久久久久一区二区| 国产午夜亚洲精品不卡在线观看| 91精品一区二区中文字幕| 虫虫漫画免费漫画弹窗入口| 亚洲欧美日韩国产精品网| 中文字幕在线免费观看一区二区 | 精品一区二区三区影院在线午夜| 青青青免费在线视频亚洲| 欧美日本一道本一区二区中文| 99欧美日本一区二区留学生| 午夜福利片1000无码免费| 书记灬啊灬啊灬轻点白芸小说| B老骚B老熟B老太中国老骚B| av综合网男人的天堂| 91大神精品在线| 中文字幕a片视频一区二区| 亚洲一区二区精品视频在线观看| 亚瑟女厕盗摄视频大全| 久久男人高潮av女人天堂| 天堂а√在线中文在线新版| 国产黄色片免费看| 一本加勒比hezyo无码专区| 中文字幕乱码视频32| 欧美做爰全过程免费观看| 少妇含泪肉体偿还| 国产精品久久久久久久免费大片| 久久久亚洲欧洲日产国码二区| 电击奶头の尿失禁调教视频| 日韩欧美国产另类久久久精品| 三级慰安女妇威狂放播| 亚洲欧美不卡高清在线| 日韩精品免费一区二区夜夜 | 日韩视频在线国产成人| 91久久久久久国内免费视频| 午夜小视频免费观看| 国产亚洲高清视频| av国内精品久久久久影院| 西西444WWW无码视频男男| 精品欧美一区二区三区免费观看| 国产亚洲五月天综合91| 久久综合狠狠狠综合图片| 欧美日韩亚洲一区二区蜜桃臀| 李宗瑞91在线正在播放| 亚洲啪啪aⅤ一区二区三区9色| 国产+麻豆+免费| 调教+白浆+高潮| 国产一级久久久久av片| 国产伦子伦对白在线播放观看 | 国产成人在线视频资源站| 少妇无码一区二区三区| 欧美专区+日韩视频+人妻| 最新欧美激情视频一区二区三区| 中日韩乱码一二新区| 五月天丁香在线观看| 伊人精品成人久久综合| 免费观看真人视频直播7777| 国产+人人+欧美视频| 久久亚洲精品无码观看网站| 波多野结衣视频在线国产二区| 国产亚洲papapa| 另类国产ts人妖高潮系列视频| 亚洲黄色免费观看| 国产日韩精品一道在线观看| 国产精品久久久久久久免费大片 | 9.1入口在线观看免费| 成人免费视频国产免费麻豆| 精品国产91久久久| 99久久免费国产精品6| 久久成人在线视频| 欧美视频在线观看免费www| 欧美激欧美啪啪片免费看| 一本色道HEZYO无码专区| 国产精品美女乱子伦高| 91精品国产综合久久国产大片| 久久一区二区三区四区| 欧美国产又粗又长又爽视频| 国产精品线在线精品| 激情午夜福利在线视频观看| 亚洲国产日韩视频观看 | 88国产精品视频一区二区三区| 欧美一区二区三区红桃小说| 国产大片黄在线观看私人影院| 中文字幕丝袜人妻乱一区三区| 正在播放+日韩+无码| 中文字幕+乱码+www| 91精品国产成人观看免费九色| 国产欧美二区综合| 久久精品苍井空精品久久| 欧美日韩国产专区一区二区| 97成人做爰a片无遮挡直播| 精品国产乱码久久久久久88av | 奶水人妻freeHDXⅩXX| 日本三级在线视频| 国产午夜福利片在线观看| 欧美日韩国产激情一区二区三区 | 欧美激情一区二区三区四区| 日本美女直播一区二区三区| 黄瓜视频在线观看| 日本黄色美女视频| 亚洲+先锋影音+图片| 在线+免费+国产| 国产a在亚洲线播放| 国产精品永久久久久久久| 日韩欧美成人网站| 丰满人妻无奈张开双腿av| 青青草国产免费国产是公开| KTV女技师啪啪无套内谢| 国产高清在线a免费视频观看| 五月婷婷综合在线观看| av在线直播一区二区三区 | 国产xxxxx在线观看免费| 啪啪网站免费观看无需下载| 1024国产成人精品视频| 久久99精品无码一区二区| 欧美三级少妇高潮| 黑人一区二区三区| 人妻在厨房被色诱| 蜜桃av噜噜一区二区三区麻豆| 农村女人毛片精品久久久| 手机看片福利永久国产香蕉| av国内精品久久久久影院| 国产日产韩国精品视频| 国产在线视频一区二区三区| 国产女人高潮视频在线观看| 国产成人av一区二区三区在线观看 | 国产亚洲久久久久久久| 午夜福利天堂一区二区在线观看| 97夜夜澡人人双人人人喊| 国产免费av一区二区在线观看| 日韩免费在线播放一级黄片| 狠狠躁夜夜躁人人爽天天不| 人妻丝袜中文字幕在线视频| 久久精品+中文字幕+有码| 国产+免费+视频| 欧美+国产+在线观看| 人妻熟妇乱又伦精品视频无广告 | 免费在线观看不卡av| 主播大秀一区二区三区| 国产一级在线视频免费观看| 窝窝影院免费观看高清电视剧 | 欧美日本国产韩国在线不卡 | 久久亚洲精品无码观看网站| 中文字幕国产专区欧美激情| 精品国产一级片在线观看| 风间由美+五十路| 神马久久久久久久久久久| 亚洲欧美自拍另类| 欧美亚洲日本一区| 日韩激情一区二区三区| 国产精品视频免费看人鲁| 日本黄色免费视频| 欧美久久久久久久久久久久久久| 2018av无码视频在线播放| 成人一区二区三区国产精品| 欧美日韩国产一区精品一区| 日韩欧美一级视频在线观看| 最近最新mv字幕免费观看| 奇米影视亚洲春色| 中文字幕日本精品一区二区三区| 狂躁欧美肥臀大BBBB| 国产高清无套内谢| 国语精品自产拍在线观看网站| 日韩精品无码av中文无码版| 日日碰狠狠添天天爽超碰97| 狠狠cao日日穞夜夜穞av| 视频一区二区中文字幕在线| 欧美视频免费观看午夜在线| gav成人网免费免播放器播放 | 超碰伊人久久大香线蕉综合| 黄色免费网站在线| 艳妇臀荡乳欲伦交换av1| 免费看日产一区二区三区| 日韩18中文字幕欧美在线| 中文字幕人妻在线中字| 永久www成人看片| 欧美+在线+亚洲| 波多野结衣被躁120分钟小说| 欧美+国产+在线观看| 搡BBB搡BBBB搡BBBB| 欧美+日韩精品+另类图片| 国产精品九九九久久综合| 日本+国产+在线观看| 国产+麻豆+免费| 国产+午夜福利+精品一区| 国产超碰人人做人人爽av大片| 免费日本久久a视频一区二区| 伊人热热久久原色播放www | 中文字幕欧美亚洲视频免费| 久久亚洲成人x视频| 欧美国产成人精品一区二区三区| 奇米第四色777| 精品国产_亚洲人成在线| 99久久精品无码一区二区三区| 日日噜噜夜夜狠狠久久丁香五月| 中文精品人妻素人一级片| 可以免费看日本黄色的网站| 国产成人午夜福利在线观看| 在线观看jizz| 免费观看mv大片高清| 探花视频免费观看高清视频| 91这里只有精品| 免费+成人+国产| 大香蕉国产在线视频| 日本人妻丰满熟妇www色| 91久久精品国产| 成人av在线资源| 精品国产亚洲av色噜噜| 中文无码av一区二区三区| 无码人妻精品一区二区三区免费| 91成人在线免费观看| 国产精品v欧美精品v日韩精品v| 欧美精品三级黄片| 欧美+国产+在线观看| 国产成人精品一区二区在线观看| 中文字幕久久波多野结衣av不卡| 六十路初撮り完熟在线| 日韩视频欧美国产一区二区三区| 美女视频图片久久黄网站 | 丁香五月激情综合亚洲| 《金莲淫史》全黄| 亚洲va国产日韩欧美精品色婷婷| 午夜日本永久乱码免费播放片| 一区二区三区国产91久久久| 日本人妻人人人澡人人爽| 人妻在厨房被色诱| 麻豆国产网站入口| 欧美成人看片一区二区尤物| 国产1024成人精品视频| 国产乱人伦偷精品视频不卡| 国产又粗又硬又爽又猛又黄视频| 日韩激情一区二区三区| 成年网站在线在免费线播放欧美| 三级片免费AV在线| 亚洲影院丰满少妇中文字幕无码| 久久无码人妻一区二区三区午夜| 人人爽久久涩噜噜噜av| 九九久久国产一区二区三区| 国语对白做受xxxxx在线| 在线精品视频一区二区三四| 粉嫩av一区二区三区四区五区| 在线bt天堂网.www最新版| 亚洲视频一区亚洲视频一区| 在线免费观看国产精品| 国产美女又黄又爽的视频| 国产91勾搭技师精品| 熟妇人妻av中文字幕老熟妇| 国产对白叫床清晰在线播放图片 | 国产精品vr虚拟专区| 亚洲色偷偷色噜噜狠狠99网| 成年人在线视频观看| 亚洲精品乱码久久久久久按摩| 免费香蕉成视频人网站| 大香蕉网国产在线观看av| 亚洲国产最大av| 好大好湿好硬顶到了好爽视频| 亚洲欧美综合7777色婷婷| 婷婷俺也去俺也去官网| 精品国产91久久久久久动漫| 91久久久久久久久久久久| 美女在线视频黄色免费网站| 777婷婷天堂综合区色吧| 欧美v欧美v视频在线观看视频| 国产+在线+激情| 中文字幕丝袜人妻乱一区三区| 国产成人cao在线| 日本人六九视频69jzz免费| 国产精品白丝久久Av网站| 巨乳童颜+影音先锋| 18禁黄网站男男禁片免费观看 | 黄色一级大片在线免费看产| 九色综合狠狠综合久久| 丰满美女一级视频一区二区三区| 免费网站观看www在线观看| 成年网站在线在免费线播放欧美 | 成年男女免费视频网站| 国产麻豆亚洲欧美高清一区二区| 伊大人香伊大人香蕉在线视频下载| 91视频最新入口| 精品+在线+免费观看| 日韩18中文字幕欧美在线| 最新69国产成人精品视频免费| 免费+精品+国产网站| 成人网站国产在线视频内射视频| 丰满美女一级视频一区二区三区 | 91久久久久久久久久久久| 国产极品美女高潮抽搐免费网站 | 在线看片免费不卡人成视频| 久久久久久a亚洲欧洲av冫| 久久偷看各类wc女厕嘘嘘| 中文字幕亚洲乱码1区2区| 国产美女免费网站| 欧美成人免费一级| 99精品视频99| 动漫美女h黄动漫在线观看| 日韩美女搞黄视频一区二区| 好男人社区www在线视频| 亚洲精品成人片在线观看精品字幕 | 免费+日本+国产| 国产亚洲精品自拍| 成人美女免费网站视频| 亚洲美女视频网站| 妺妺窝人体色777777粗玫瑰园| 精品无码成人片一区二区98| 久久国内精品自在自线图片| 欧美激情一区二区三级高清视频| 国产视频一区二区在线免费观看| 久久精品国产68国产精品亚洲| 亚洲欧洲中文日韩久久av乱码| 亚洲人av在线影院| 欧美日韩精品一区二区精品 | 国内精品国产三级国产a久久| 成人在线免费观看视频| 亚洲毛片在线免费观看| 国产精品午夜久久小视频| 97人伦色伦成人免费视频| 黄色片在线观看免费| 亚洲欧美日韩在线不卡| 美女网站免费在线观看日韩| 18+在线视频观看| 国产菊眼屁股交3| 强硬进入岳A片69| 亚洲一区中文字幕| 国产白丝jk捆绑束缚调教视频| 国产精一品亚洲二区在线播放| 亚洲l码和欧洲m码的区别| 久久久噜噜噜久久久午夜| 亚洲日韩中文字幕在线播放| 中文字幕第一区综合| 久久精品苍井空精品久久| 亚洲欧美在线视频| 亚洲一区二区三区四区在线播放| 色88欧美日韩国产无线码| 成人亚洲a片v一区二区三区蜜月| 国产又粗又猛又黄又爽的视频| 国产在线观看mv免费全集电视剧大全| 影音先锋+无码高清| 久久久久青草线蕉综合超碰| 高清不卡亚洲日韩av在线| 国产91精品欧美| 国产高清无套内谢| 亚洲国产手机免费在线观看| 深夜国产福利小视频在线观看| 久久人妻这里有精品视频| 一区二区三区国产日韩欧美在线| 西西GoGoGo高清在线完整版| 97超级精品综合网| 熟妇槡BBBB槡BBBB| 4488CC.成人A片| 精品欧美一区二区三区不卡视频| 亚洲精品久久久久久蜜桃 | 国产精成a品人v最新网站| 日本无卡无吗二区三区入口| 夜色毛片永久免费| 少妇高潮喷水久久久久久久久久| 国产情人综合久久777777| 狠狠色狠狠色综合日日小说| 日韩欧美aaaa羞羞影院| 7777久久久国产精品消防器材| 久久精品中文字幕一区二区三区| 女人被强╳到高潮喷水在线观看| 综合久久综合久久| 日韩三级一区二区三区| 中文字幕淑女丝袜人妻在线| 亚洲人妻内射一区二区三区| 国产一级真人做受| 亚洲综合五月天婷婷丁香| 足疗店熟女一88AV| 小草社区视频在线观看| 大香蕉在线视频观看75| 夜夜添狠狠添高潮出水| av在线免费观看一区不卡| 青青草国产午夜精品| 亚洲va欧美va国产综合久久| 一级A片巜色情荒野| 国产偷国产偷亚洲高清人乐享| 黄片久久久久久久黄片久久| 国产高清一区二区三区视频| 成人网站免费大全日韩国产| 动漫精品啪啪一区二区三区| 久久www人成免费看片中文| 欧美三级在线观看视频| 少妇厨房愉情理伦片bd在线观看| 97人妻系列高清一区二区| 在线播放av网站| 国产精品三级av及在线观看| www.四虎.com| yy4480青苹果乐园免费播放电视剧 | 精品久久国产字幕高潮| 天堂资源wwwav啪啪| 天天狠天天添日日拍捆绑调教| 久久国产欧美日韩精品图片| 精品1区2区3区4区产品| 无码专区狠狠躁天天躁| 视频久re精品在线观看| 少妇高潮流白浆在线观看| 日韩毛片+18+免费看| 最近中文字幕免费观看视频| 人摸人从澡从超碰三级| 亚洲成在人线av品善网好看| 偷拍东北熟女乱xxxxx| 黄页免费视频网站国产一区| 日本欧美在线观看| 牲交a欧美牲交aⅴ免费一| 无码AV波多野结衣久久| 在线+欧美+国产| 第99页亚洲精选久久久久| 黄色av一区二区| 免费观看已满十八岁电视剧动漫星辰 | 97国产精品久久| 天天躁日日躁狠狠躁伊人| 久久无码人妻一区二区三区| 欧美激情中文字幕综合八区| 国产成人福利美女观看视频| 国产孕妇乱子伦精品免费观看| 日韩视频在线国产成人 | 99在线成人精品视频| 亚洲成人国产精品| 国产日韩欧美在线播放一区二区 | 蜜臀久久99精品久久久无需会员| 妖精视频在线观看免费| 18+漫画在线看| a级老太婆毛片老太婆毛片| 亚洲AV一二三又爽又色又色| 国产资源在线观看| 无码+剧情+动漫| 中文字幕丰满乱子无码视频| 国产偷人妻精品一区| 九九最新视频完整| 久久久91精品国产一区二区三区| 国产一级精品理论片在线| 国产+日产+欧美| 欧美视频一区二区三区| 75歳の熟女セックス合集牛牛| 麻豆精品人妻一区二区三区蜜桃 | 亚洲精品综合在线观看| 亚洲日本中文字幕在线四区 | 80s+毛片+免费观看| 人妻无码专区一区二区三区| 久久精品成人欧美大片| 国产激情久久久久99视频| 色婷婷av久久久久久久| 中文字幕+乱码+中文字幕在线观看 | 中文字幕a片视频一区二区| 中文字幕一区二区在线看www| 欧美大片免费播放器| 国产99久久精品一区二区| 超碰中文字幕在线| 99精品视频免费版的特色功能 | 日本国产亚洲一区在线观看视频 | 91av精品一区二区三区| 亚洲激情av在线| 国产区日韩区欧美区| 久久久久国产精品嫩草院| 女神呻吟娇喘高潮毛片 | 国产成人精品午夜福利女同| 欧美一级a视频在线观看免费| 日韩国产在线观看不卡免费| 国产成人cao在线| 国产一区二区三区免费高清在线播放| 亚洲午夜精品一区二区三区国产 | 国产成人精品18禁三区| 日韩一级黄色录像| 久久免费精品国自产拍网站| 亚洲综合国产精品第一页| 国产精品久久久久久亚洲a | 国产在线精品免费| 国产末成年av在线播放| 手机免费看片AV永久看片国产日韩| 大香蕉精品手机在线观看| 成人无码www免费视频嘿嘿软件| 五月激情婷婷综合| 免费无码毛片一区二三区| 国产伦子伦对白在线播放观看| 久久成人免费精品网站| 天堂√最新版中文在线地址| 中文字幕+乱码+中文字幕在线观看| 亚洲国产欧美另类| 亚洲va欧美va人人爽春色影视| 亚洲精品成人片在线观看精品字幕 | 国产又粗又硬又大爽黄| 白嫩少妇各种bbwbbw| 日韩人妻无码一区二区三区 | 女人被爽到高潮免费视频国产 | 亚洲vr国产美女精品久久久久| 国产成人综合久久精品推| 精品国产欧美日韩一区二区| 中文字幕在线看高清好看的电视剧 | 色88欧美日韩国产无线码| 欧美激烈精交gif动态图| 狠狠躁夜夜躁人人爽天天不卡| 午夜精品乱人伦小说区| 亚洲一区二区三区激烈免费视频| 8848在线播放免费观看电视剧| 成人免费毛片东京热| 久久久久波多野结衣高潮| 亚洲+变态+欧美| 亚洲人成在线播放网站岛国| 日韩内射人妻1区2区3区| 久久久青草青青亚洲国产免观| 久久久久久国产精品免费看 | 亚洲综合无码av一区二区三区| 天堂久久久久va久久久久| 日日噜噜噜夜夜爽爽狠狠视频| 在办公室被c到呻吟的动态图| 欧美一级a视频免费在线观看| 国产黄色片网站大全| 国精产品99永久一区一区| 孕妇丨91丨九色| 免费+五码+国产| 亚洲国产精品一区第二页| 337p日本欧洲亚洲大胆精蜜臀 | 青青青青久久国产片免费精品| av无码+高潮+白丝| 全网最新最全热门短剧在线观看| 好男人社区www在线视频| 久久久久亚洲精品| 狠狠色丁香婷婷久久综合蜜芽| 免费观看又色又爽又黄的崩锅| 三上悠亚在线日韩精品| 苍井空亚洲精品AA片在线播放 | 国产人久久人人人人爽| 中文字幕亚洲第14| 久久久久久免费毛片| 中文资源在线天堂库8| 欧洲av成本人在线观看免费| 欧美日韩国产专区一区二区| 日韩中文字幕影院| 人妻无码一区二区三区免费| 久久亚洲国产男女日穴精选| 国产精品青草久久福利不卡| 中文字幕视频一区| 肉丝美足丝袜一区二区三区四| 国产亚洲精品久久久久久小舞| 免费观看mv大片高清| 国产99久久精品免费看| 精品亚洲成熟女人www| 一区二区三区四区欧美极品| 亚洲av乱码国产精品观看麻豆 | 亚洲自偷自拍另类12p| 中文字幕亚洲一区视频在线观看| 国产精品亚洲欧美一区二区| 男女啪啪激情视频免费观看国产| 在线中文字幕视频| 亚洲成av人片一区二区三区| 国产精品秘入口18禁麻豆免会员| 人妻熟女av一区二区三区| 在线亚洲国产鲁一鲁网| 丰满人妻做爰2理伦片免费看| 中国熟妇XXXX18| 国产高清a视频在线观看| 黄色软件网站入口| 日韩国产一区二区三区| 一区二区视频在线免费观看| 欧美国产成人精品一区二区三区| 民工粗大的茎弄得我好爽视频| 亚洲国产精品久久又爽av| 97精品国自产在线偷拍| 五十六十路熟女交尾a片| x7x7x7成人免费视频| 欧美日韩在线视频播放| 国产精品一区二区久久不卡| 极品少妇被啪到呻吟喷水| 特级西西444www大精品视频| 国产精品+丝袜+制服| 国产亚洲又爽ⅴa在线天堂| 又色又爽又黄的视频女女| 欧美成人在线免费观看| 久久老熟妇精品免费观看| 欧美精品黄片一区二区三区| 久久亚洲精品无码aⅴ大香| 日韩精品人成在线播放| 在线精品一区二区三区| 亚洲国产日韩欧美愉拍精品| 欧美xxxxx做受vr91九色| 嫩草嫩草嫩草久久水拉丝了| 亚洲天堂成人在线观看| 日韩东京热无码免费视频| 高清+免费+国产| 免费+成人+在线观看| 床戏(巨肉高h)双男| 日韩又大又长又粗又硬又爽视频| 国产亚洲综合欧美一区二区| 国产这里只有精品| 国产偷人妻精品一区二区在线 | 天堂在线免费观看视频www| 日韩精品一区二区三区中文| 国产精品三级赵丽颖| 国产欧美日韩另类精彩视频| 国产+r级+磁力链接| 伊人精品成人久久综合| www黄色在线观看| 中文资源在线一区二区三区av| 精品无码人妻视频一区视频二区| 国产国语露脸激情在线看| 人与野鲁毛片在线视频| 精品亚洲中文字幕东京热网站| 免费人成黄页网址在线观看国产| 日本五十肥熟交尾| 视频一区二区三区亚洲天堂网 | 亚洲欧美日韩国产精品网| 99热九九热精品在这里做| 极品少妇伦理一区二区| 人妻+综合+激情| 肥臀浪妇太爽了快点再快点| 天堂在线一区二区| 日本haaeX孰妇乱子高潮| 国产成人av三级在线观看 | 亚洲欧美洲成人一区二区三区| 在情趣店上班被爆cao翻了 | 亚洲综合区图片小说区| 国产+亚洲+国产精品| 午夜福利人妻专区一区二区| 老牛影院在线观看免费下载电视剧 | 国产+免费+白浆| 国产精品av一区| 国产成人午夜精华液| 国产精品午夜久久小视频| 激情影院免费视频试看| 国产婷婷av片在线观看| 日韩av免费在线看| 日本欧美亚洲中文在线观看| jzzijzzij日本成熟丰满| 成人做爰A片免费播放乱码| 国产一区二区狠干| 日韩av资源在线| 九九影院在线观看电视剧| 亚洲国产成人va在线观看天堂| 日本欧美国产在线视频一区| 久久精品国产亚洲七七| 中国猛少妇色xxxxx| 99国产在线视频有精品视频| 97视频+国产日韩欧美| 日韩中文在线字幕| 亚洲一区二区三区激烈免费视频| 日产精品1区2区3区| 国产精品日韩欧美亚洲另类 | aⅴ网站在线观看| 人妻无码av一区二区三区精品| 大香蕉网国产在线观看av| 国产+很黄+视频| 亚洲欧美成人一区二区三区| 国产成a人片在线观看麻豆| 高潮+刺激+爽av| 亚洲精品美女久久久久网站| 国产精品色婷婷久久99精品| 国产91麻豆一区二区在线| 亚洲精品久久久av无码专区| 国产成人精品视频国产| 好吊视频一区二区三区| 日本精品免费在线观看| 中文字幕+乱码+中文字幕无忧| 黄色av网站免费观看| 在线人成免费视频69国产| 狠狠综合久久av一区二区| 永久免费不卡在线观看黄网站| 久久久精品小视频| 久久精品99久久香蕉国产| 久久久久久久久人妻a免费看| 国产+日韩+欧美精品| 中文字幕久久精品无码| 亚洲视频在线免费| 国产曰又深又爽免费视频| 亚洲无线码在线一区观看| 综合久久婷婷丁香国产一区二区| 手机看片福利永久国产香蕉| 青草av久久免费一区| 中文字幕丰满乱子无码视频| 91这里都是精品久久久久| 欧美网站大全在线观看| 亚洲国产成人va在线观看天堂| 亚洲熟妇AV乱码在线观看| 精品无码人妻视频一区视频二区| 无码av无码一区二区桃花岛| 欧美视频在线观看完整版中文| 怡红院最新免费全部视频| 中文天堂在线www| 国产精品国产三级国产av剧情| 国产在线国偷精品产拍| 日韩国产亚洲欧美中国v| 美女视频黄免费的亚洲男人天堂| 亚洲永久免费播放片国产| 懂色av绯色av密臀av| 亚洲人成色77777在线观看大战| 欧美日韩激情在线观看免费| 东京亚洲女图片在线观看| 午夜理论片yy6080私人影院| 亚洲国产日韩精品在线观看 | 午夜精品一二三区| 伊人色综合久久天天五月婷| 狠狠躁夜夜躁人人躁婷婷91| 久久婷婷国产剧情内射白浆| 黑人大战日本少妇| 色哟哟丨小泬丨国产专区| 成人乱淫av日日摸夜夜爽节目| 亚洲人交乣女bbw| 精品亚洲77777www| 又黄又爽全无遮挡的免费视频| 国产一国产二国产三| 中文字幕+亚洲一区二区三区| 四十路の高齢熟妇无码| 四川少妇搡搡BB| 变态另类天上人间| 无码中文字幕ⅤA精品影院| 日本护士vivoes极品另类| 日本黄色免费视频| 亚洲处破女av日韩精品| 区二三区四区精华日产一线二线三| 国产精品人人妻人人爽人人牛| xxx日本一区二区免费| 777久久久风间由美中出| 欧美一区二区视频在线| 亚洲国产专区校园欧美| 中国特级黄色毛片| 天天鲁一鲁摸一摸爽一爽| 久久精品国产久精国产思思! | 狠狠躁天天躁综合网| 国产中文字二暮区| 国产在线高清理伦片a| 天堂av2020| 中国特级黄色毛片| 欧美中亚洲中文日韩| 久久久久国产一区二区三区| 精品亚洲国产成人av| 欧美一区二区三区久久精品| 窝窝影院在线播放免费观看电视剧 | 亚洲成AV人片一区二区密柚| 丰满无码人妻热妇无码区| 丰满人妻被黑人连续中出| 亚洲精品视频一区二区| 在线欧美日韩三级| 久成人免费精品xxx| 国产在线精品观看| 人妻有码精品视频在线| 成年网站在线在免费线播放欧美| 真人做爰片免费观看播放第09集| 高潮+喷水+调教| www欧美国产丝袜一区二区| 按摩轻轻挺进人妻| 成人午夜精品一区二区张津瑜 | 国产a国产片国产| 国产尤物精品自在拍视频首页| 777777国产7777777| 樱花在线视频免费观看电视剧| 影音先锋+在线+国内| 一道本高清一区二区av| 亚洲人成网址在线播放| 国产女主播尤物视频在线观看| 人人超碰91尤物精品国产| 噜噜噜噜香蕉私人| 精精国产xxxx视频在线野外| 欧美亚洲熟妇一区二区三区 | 中国老妇淫片bbb| 成全影视免费观看| 亚洲精品字幕在线观看1| 国产色综合天天综合网| 辽宁熟女高潮狂叫视频 | 国产原创在线观看福利精品| 久久久精品视频网站| 欧美两根一起进3p做受视频| 国产精品欧美久久久无广告| 免费av大全网站在线观看| 日本高清视频一区| 十八岁成年免费观看电视连续剧法国| 国产又黄又爽又色视频免视频| 国产高清精品福利私拍国产写真| 波多野结衣无码一区| 亚洲视频在线播放一区二区三区| 伦理片国产精品久久一国产精品| 国产大片内射1区2区| 日本大片又大又好看的PPT模板视频 | 国产特黄大片aaaa毛片| 国产美女视频精品黄频免费观看 | 国产精品麻豆入口29| 视频一区二区三区在线观看| 久久精品亚洲国产av麻豆| 久久最新免费视频| 亚洲+精品+欧美| 国产精品69久久久久不卡| 天堂在线网www在线网| 九一麻花传剧mv免费观看影视大全 | 午夜在线不卡精品国产| 女人扒开腿婬乱A片| 国产传媒在线播放| 国产精品免费观看调教网| 2020久久香蕉国产线看观看| 亚洲成人久久一区二区三区| 两人午夜免费观看www| 免费福利视频网站一区二区三区 | 亚洲第一综合成人在线观看| 亚洲视频一卡二卡三卡四卡 | 最新精品国产av片国产| 91精品久久久久久综合乱菊| 超级碰碰人妻中文字幕| 日本淫片免费啪啪3| 久久久噜噜噜久久久午夜 | 葵司+下载+影音先锋| 黄色毛片一级黄色| 亚洲人妻内射一区二区三区| 日本爽爽爽爽爽爽在线观看免| JIZZJIZZ亚洲无乱码| 国产人妻精品久久久久野外| 无码+蓝衣+磁力| 亚洲精品视频免费| 日韩美女免费线视频| 亚洲Aⅴ成人精品一区二区三区 | 天堂√最新版在线| 中国女人熟毛茸茸a毛片 | 久久www免费人成精品高清| 少妇激情av一区二区| 欧美日韩精品亚洲色图视频免费| 一区二区三区日韩中文字幕欧美| 欲香欲色天天综合久久| 成全在线观看免费完整| 视频在线一区二区| 国产女生高潮视频免费网站| 国内女人喷潮完整视频| 国产精品呻吟高潮久久久| 96国产xxxx免费视频| 日韩精品网站在线观看| JLZZJLZZ亚洲女人19| 国产无遮挡又黄又爽免费网站| 中文字幕国产专区欧美激情| 国产一区二区四区在线观看| 丰满女人无套内谢| 国产精品亚洲综合久久系列| 亚洲色图日韩伦理国产精品| 九九久久99综合一区二区| 少妇久久久久久久| 午夜影院亚洲大码免费| 久久久久国色av∨免费看| 国产又粗又猛又爽又黄4 | 欧美黄色免费视频| 国产精品一区免费在线看| 亚洲日韩色欲色欲com| 欧美国产日韩一区二区三区在线 | 久久久久国产aa一区二区三区| 国产尤物精品自在拍视频首页 | 搡老熟女老女人一区二区| 久久久久久一区国产精品| 一本大道中文日本香蕉| 中文日产码2023天美| 亚洲国产成人在线视频| 在线观看日韩中文字幕| 欧美国产又粗又长又爽视频| 影音先锋+无码高清| 亚洲AV成人片无码| 亚洲成亚洲乱码一二三四区软件 | 久久国产精品久久喷水| 久久精品道一区二区三区| 国产欧美久久一区二区| 亚洲国产精品久久99人人更爽| 搜查官+丝袜+影音先锋| 国产色综合天天综合网| 一区二区在线免费| 日本美女直播一区二区三区| 国产日本久久久久久久久婷婷| 国产精品原创av| 黑人搡BBBBB搡BBBBB| 亚洲国产欧美在线成人aaaa| 亚洲中文成人中文字幕| 国产传媒在线播放| 女人高潮奶头翘起来了| 国内精品久久久久影院薰衣草| 高清有码国产一区二区| 91麻豆国产福利在线观看| 亚洲成AV人片一区二区梦乃| 亚洲国产黄在线观看| 国产激情视频在线| 国产情人综合久久777777| 69国产精品久久久久久人妻 | 大桥未久+高清无码| 一区二区三区四区免费视频| 久久精品农村毛片| 波多野结衣一区二区三区av高清| 日本毛片高清免费视频| 亚洲高清www色好看美女| 亚洲视频一卡二卡三卡四卡| 欧美+在线+亚洲| 亚洲精品一区二区三区中文字幕| 人妻av中文字幕久久| 神马久久久久久久久久久| 久在线观看福利视频| 国产精品一区二区av在线| 97在线视频观看| 日本久久高清免费观看| 中文国产日韩精品av片| 最新国产av最新国产在钱| 精品视频一区二区三区中文字幕| 自拍偷拍亚洲色图日韩欧美| www.17c嫩嫩草色蜜桃网站| 96国产xxxx免费视频| 国产亚洲成人av| 久久婷婷五月综合色一区二区 | 日日AV色欲香天天综合网| 欧美日韩精品人妻三区东京热| 国产麻豆乱码精品一区二区三区| 国产极品美女到高潮| 欧美亚洲日韩在线在线影院| 欧美色欧美亚洲另类七区| 九九热在线精品视频| 亚洲国产日韩成人a在线欧美| 在线а√天堂中文官网| 野外少妇被弄到喷水在线观看| 国产精品伊人久久久久久| 国产精品一区二区av在线| 国产麻传媒精品国产AV| 欧美日韩免费高清一区色橹橹| 亚洲噜噜狠狠网址蜜桃av9| 精品视频中文字幕| 久久精品亚洲天堂| 97se亚洲精品一区二区| 日韩一区二区三区无码影院| 欧美国产高清在线一区二区| 日韩又大又长又粗又硬又爽视频| 欧美日韩不卡在线视频| 午夜国产福利小视频在线| 狠狠躁18三区二区一区| 成人一区二区在线播放| 在线观看国产精品冒白浆| 黄页网站大全男女免费观看| 在线亚洲97se亚洲综合在线| 日韩不卡高清视频| 久久国产精品久久喷水| 黑人巨茎绿帽人妻| 2022亚洲无砖无线码| 国产高清免费av| 无码专区亚洲制服丝袜| 人妻精品国产一区二区| 老熟女北岛玲Ⅴ8AV| 色欧美福利视频看看午夜| 成人秘视频一区二区三区| 一区二区三区精品视频免费播放| 青青草无码伊人久久| 国产日韩欧美一区| 极品+普通话+磁力链接 | 美女被草+在线观看| 日韩不卡高清视频| 久久精品国产99精品国产2021 | 色婷婷五月综合亚洲小说| 国产+群p+在线观看| 99在线视频一区二区三区| 欧美极品少妇xxxxⅹ免费视频| 国产美女视频一区二区三区| 九九在线观看免费播放大全电视剧| 无码成人AAAAA毛片AI换脸| 麻豆精品免费在线观看视频| а√中文在线资源库| japanese色国产在线看免费| 高潮+喷水+调教| 亚洲欧美中文字幕在线net| 日本韩国欧美一区二区三区| 亚洲成人在线视频观看| 午夜免费福利在线观看| 伊人干网综合亚洲| 年轻的嫂子+磁力链接| 欧美日韩国产一区二区三区精品| 国产成人亚洲精品青草| 国产免费午夜福利757| 无码专区人妻丝袜| 黑人按摩人妻HD中字5| 2020久久香蕉国产线看观看| 精品国产依人香蕉在线精品| 国产+麻豆+美女| 欧美一级视频在线观看三级 | 欧美+日本+亚洲| 国产又色又爽又高潮免费| 久久97久久97精品免视看秋霞| a一区二区三区乱码在线| www.亚洲最全福利视频网站| 99久久婷婷国产综合精品| 国产+亚洲+欧洲| 在线观看麻豆国产成人av在线播放| 久青草国产在线视频_久青草免| 亚洲国产日韩a在线乱码| 播五月开心婷婷欧美综合| 国产精品国产三级国产专播精品人| 无码专区亚洲制服丝袜| 2022亚洲无砖无线码| 国产高清在线一区| 在线看片免费不卡人成视频| 亚洲欧美洲成人一区二区三区 | 狠狠噜天天噜日日噜色综合| 欧美美女免费国产一区二区| 亚洲大乳av成人天堂精品| 亚洲欧洲在线观看| 手机免费av在线| 牛牛在线免费视频| 国产精品久久久久久影院| 麻豆一区二区99久久久久| 国产精品久久久精品影院| 好大好湿好硬顶到了好爽视频| 国产av一区最新精品| 国产+高潮+真人| 99国产精品免费播放| 国产一二三区精品亚洲美女| 亚洲专区在线视频| 黄色成人在线视频| 亚洲人成色77777在线观看大战| 国产精品av一区| 国产传媒在线播放| 欧美国产日韩综合| 真人床震高潮全部视频免费| 国产亚洲日韩在线a不卡| 欧美日本一道本一区二区中文| 无码专区aaaaaa免费视频| 少妇特黄一区二区三区| 亚洲丶国产丶欧美一区二区三区| 999精品视频在线| 一本大道AV伊人久久综合| 亚洲成人在线播放视频| 黄金网站app大全免费| 国产在线观看欧美二区三区| 久久久综综合色一本伊人| 欧美精品一区二区高清在线观看| 亚洲国产精品尤物yw在线观看| 日本日本熟妇中文在线视频| 中文字幕一区二区三区久久人妻| japanese色国产在线看免费| 熟女乱色一区二区三区91 | 国语做受对白xxxxx在线| 国产精品美女久久久久av爽李琼| 2018国产天天谢在线观看| 欧美一级免费在线观看视频最新| 亚洲国内精品自在线影院牛牛 | 亚洲一级视频在线观看视频 | 免费+岛国+h动漫| 久热中文字幕第一区二久| 五月综合网亚洲乱妇久久| 久久99亚洲5精品片片| 一区二区久久精品66国产精品| 精品99一卡2卡三卡4卡| 久久精品国产亚洲av水果派| 伊人色综合久久天天网| 99re6热在线精品视频播放| 午夜福利黄色小视频| 中文字幕亚洲乱码1区2区| 成人资源在线观看| 97视频在线观看免费| 国产精品日韩欧美一区二区| 国产情侣极品精品一区| 天堂av国产夫妇精品自在线| 伊人成人开心婷婷久久网| 91成人在线免费观看| 免费国产黄网站在线观看| 欧美人妻456aⅴ中文字幕| 天堂av资源在线| 欧美+香蕉网+久久| 亚洲精品92内射| 国产欧美大片一区二区三区| 成人年人免费看xxxxxxx| 日韩人妻无码免费视频一区二区三区 | 成人毛片18女人A片免费观看成人在| 一级美国无码高清| 国产精品欧美三区四区五区| 手机免费av在线| 久久亚洲春色中文字幕久久久| 国产一区二区三区在线| 美女裸体色黄污视频网站| 国产婷婷vvvv激情久| 免费+成人+国产| 亚洲熟妇AV乱码在线观看| 久久无码av中文出轨人妻| 91麻豆精品国产自产在线的| 国产精品原创巨作av女教师| 国内精品伊人久久久久av一坑| 亚洲免费观看在线美女视频| 精品国产综合久久久久| 在线新版天堂资源中文www| 国产三级不卡在线观看视频| 91精品国产综合久久福利软件| 日韩中文字幕在线观看一区二区 | 素人fc2av清纯18岁| 国产精品丝袜黑色高跟鞋v18| 丁香六月婷婷激情免费视频| 伊人国产精品影院在线观看| 欧美日韩一区二区三区aa| 乱码一卡二卡新区永久入口| 国产精品久久久夜夜高潮夜夜爽| 麻豆天美国产一区在线播放| 美女黄频视频免费大全久久| 成人做爰黄A片免费看陈冠希| 激情+国产+精品| 国产精品情侣呻吟对白视频| 美女黄色视频网站入口在线看| 成全高清免费完整观看| 久久99热只有频精品8国语| 亚洲欧美日本国产| 无码专区人妻系列日韩精品少妇| 欧美日韩国产制服精品第二页| 小视频国产在线观看网站| 99精品国产综合久久久久五月天| zzijzzij亚洲日本少妇jizjiz| 午夜免费视频观看| 亚洲综合无码av一区二区三区| 国产稚嫩高中生呻吟激情在线视频| 精品老熟妇一区二区三区| 成人av影视在线| 最新av网址在线观看| 国产精品18久久久久白浆软件| 亚洲国产精品日日爽爽视频| 日韩高清av免费在线观看| 日韩欧美丝袜中文字幕诱惑| 最近中文字幕在线视频8 | 大伊香蕉精品在线品播放| 欧美日韩成人制服丝袜三级片| 嫩草影院在线观看高清完整版| 久久露脸国语精品国产91| 高潮+喷水+调教| 国产+在线+超碰| 初撮丰满五十人妻| 久久精品99久久精品香蕉网| 在线视频免费观看一区国产| 91一区二区国产精华液| 国产精品视频一二区| 9久久国产精品免费视频| 精品亚洲永久免费aaaa| 久久精品国产亚洲av热一区| 九色视频在线免费观看| 国产一区二区三区撒尿在线| 91国產乱高潮白浆| 国产成人av网站网址| 欧美孕妇孕交xxx| 成人做爰A片免费看网站网豆传媒| 国产二区三区在线| 国产一卡2卡3卡四卡精品国色无边| 成人精品一区二区三区中文字幕| 亚洲国产综合av| 亚洲一卡二卡三卡四卡无卡姐弟| 四十路の完熟豊満无码| 国产后入激情视频在线观看| 欧美高清在线免费观看视频| 中文久久乱码一区二区| 曰欧一片内射vα在线影院| 成人在线免费高清视频| assfree疯狂老妇熟女| 视频网站菠萝视频| 美女在线视频黄色免费网站| 美女极度色诱图片www视频| 探花视频免费观看高清视频| 高清欧美精品xxxxx在线看| 小黄鸭+av导航+在线| 999在线观看免费高清电视剧| 91精品成人免费国产片| 国产精品爽爽久久久久久豆腐| 国语精品自产拍在线观看网站| 亚洲人成77777在线播放网站不卡| 1024亚洲男人的天堂久久| av天堂中av世界中文在线播放 | 另类内射国产在线| 中文字幕+亚洲专区| 国产美女遭强高潮网站一区二区| 色五月丁香五月综合五月4438| 国内精品视频一区二区三区| 日韩欧美中文字幕在线一二三区 | 日本中文字幕中出在线| 国产美女视频精品黄频免费观看 | 西西人体大胆ww4444图片| 超碰中文字幕在线| 18成人福利网站在线观看| 免费大香伊蕉在人线国产| 国产主播自拍av| 成人资源在线观看| 国产午夜精品高清在线观看| 国产1024成人精品视频| 秋霞久久久久久一区二区| 777米奇色888狠狠俺去啦| 婷婷精品综合福利在线观看视频| 国产精品va在线播放我和闺蜜| xfplay+无码| 青青草免费在线视频| 色婷婷一区二区三区av免费看| 国产精品一区二区久久精品| 亚洲精品国产剧情久久9191| 亚洲+视频+免费| 午夜久久久久久久久久一区二区| 18+sexporn| 又粗又黄又猛又爽大片免费| 97人伦色伦成人免费视频| 在线观看国产一区二区av| 国产精品原创巨作av女教师| 成年人在线观看视频| 国产精品欧美亚洲| 日韩国产精品一区二区| 中年熟女の绝顶中出| 3p人妻少妇对白精彩视频| 国产模特嫩模私拍视频在线| 中文字幕久热精品视频在线| a级特黄一级一大片多人| 超碰97国产精品人人cao| xfplay+无码| 国产亚洲精久久久久久叶玉卿| 中国国产免费毛卡片| av超碰日韩成人在线观看| 在线日韩中文字幕| 国产精品精品视频一区二区三区| 中文欧美日韩久久| 一个人看的视频www中文字幕 | 综合亚洲综合图区网友自拍| 精品视频在线免费观看网址| 四个人妻互换不戴套| 玖玖资源站无码专区| 日韩中文字幕在线观看视频| 少妇人妻呻吟青椒bobx| 中文字幕熟女人妻偷伦| 久久国国产免费999| 国产午夜福利精品一区二区三区| 少妇下面好紧好多水播放| 一本大道久久精品懂色aⅴ| 最近中文字幕++中文 | 无码中文字幕免费一区二区三区| 欧美亚洲天堂视频在线观看| 久久精品免费全国观看国产| 国产偷人妻精品19p| 色婷婷av久久久久久久| 亚洲国产精品s8在线观看 | 99久久夜色精品国产网站| 国产精品久久久久久免费免熟| 国产精品黄色资源免费在线观看| 四虎影视国产精品永久在线| 安徽丰满少妇BBBBBB| 色婷婷六月亚洲婷婷丁香| 国产精品久久av免费观看| 九九热在线精品视频| 《表妺3》伦理hd| 国产高清乱理伦片中文小说| 欧美亚洲国产手机在线观看| 菠萝蜜影院免费播放电视剧软件| 亚洲国产日韩成人a在线欧美| 国产美女在线播放| 国产精品久久久一区| 区二三区四区精华日产一线二线三| 亚洲视频一区高清在线观看| 国产九九久久99精品影院| 中文字幕有码免费在线观看| 久久精品农村毛片| 视频一区视频二区制服丝袜| 国产1024成人精品视频| 四川乱子伦农村露脸| 国产999久久高清免费观看| 欧美激情中文字幕综合八区| 中国女人做爰A片| 欧美人妻456aⅴ中文字幕| 日韩av免费在线看| av免费看片一区二区三区| 国产区77777777免费| 国产精品96久久久| 亚洲欧美日韩在线不卡| 国产精品区一区二区在线观看| 99热精品国产三级在线观看 | BBBBB女女女女BBBB| 白浆+喷水+国产| 国产精品国产三级国产av剧情| 在线看片免费人成视频久网| 久久久久国产一区二区三区不卡| 欧洲av成本人在线观看免费 | 丰满大乳奶做爰ⅹxx视频| 成av免费大片黄在线观看| 久久久久国产精品视频| 日韩一区中文字幕在线观看| 日韩精品+一区二区+av在线| 69大片视频免费观看视频| 91精品国产综合久久久蜜臀九色| 成人黄色免费观看| 91精品国产91久久综合| 人与动人物xxxx毛片人与狍| 久久久久久自慰出白浆| 成人精品视频中文字幕版| www.国产一区二区三区av| 毛片毛片毛片毛片| 中文字幕av九五月天| 风骚国产网站视频| 全程露脸X88AV| 亚洲国产午夜精品理论片妓女| 3p人妻少妇对白精彩视频| 欧美国产又粗又长又爽视频 | 亚洲+男人的天堂+一区二区| 国产麻豆乱码精品一区二区三区| 亚洲精品一区二区三区四区乱码 | 91精品国产综合久久国产大片| av在线国产精品中文字幕| 亚洲日韩在线观看免费视频| 日韩在线观看只有精品视频 | 国产精品妇女久久久久久| 日本美女直播一区二区三区| 欧美日韩在线播放三区四区| 久久99成人免费| 日本三级在线视频| 日日噜噜夜夜狠狠久久无码区| 国产娇喘喷水呻吟在线观看| 国产在线一区二区三区| 成年奭片免费观看视频天天看| 藏精阁成人免费观看在线视频| 国产精品久久婷婷六月丁香| 免费av不卡在线观看| 久久久国产精品免费| 亚洲色大成网站www尤物| 日本夜爽爽一区二区三区| а天堂中文最新一区二区三区| 亚洲人成网站777色婷婷| 夜夜高潮夜夜爽精品欧美做爰| 精品三级在线观看| 成人在线观看www| 欧美精品亚洲国产| 18禁真人抽搐一进一出免费 | 欧美成人一区二区三区| 中文字幕亚洲乱码1区2区| 亚洲制服丝袜一区二区三区| 亚洲一区二区三区国产中文 | 国产精品视频_区二区三区 | 国产午夜精品一区理论片| 亚洲天天做日日做| 黄片久久久久久久黄片久久| 国内自拍一二三四2021| 亚洲色图av在线| 日韩欧美中文字幕在线观看免费| 日本黄色视频一区二区免费| 国产又爽又黄又无遮挡的视频| 免费av大全网站在线观看| 日韩欧美一区视频| 人人妻人人澡人人爽曰本| 国产成人免费?在线播放| 老司机久久精品视频| 国产成人久久精品区一区二区| 免费+国产+ktv| 销魂美女一区二区三区视频在线| 亚洲国产中文字幕2020| 黄色免费观看网站| 97夜夜澡人人双人人人喊| 第99页亚洲精选久久久久| 无码区a∨视频体验区30秒| 99精品国产再热久久无毒不卡| 国产粉嫩呻吟一区二区三区| 欧美日韩在线视频观看| 777777农村二级毛片| 色综合天天综合天天摸天天爽| 欧美麻豆精品久久久久久| 国产不卡在线播放| 日韩国产高清在线| 黄色亚洲一区二区三区视频| 色猫咪免费人成网站在线观看| 日韩中文在线播放| 最近最好看的2018中文字幕| 亚洲视频一区二区在线免费观看| 亚洲日韩av一区二区三区四区| 熟妇激情内射com| 国产一级视频免费播放| www.四虎色情.com| 国产又粗又猛又爽又黄视频| 免费观看美女裸体网站| 在线观看免费视频日本高清| 欧美福利在线视频| 午夜久久久久久久久久一区二区| jizzjizz在线| 奇米第四声中文字幕| 国产午夜福利精品理论片| 女人抽搐喷水高潮国产精品| va亚洲va天堂va视频在线| www欧美国产丝袜一区二区| 在线视频欧美亚洲| 国产精品女同一区二夜夜夜嗨| 美女国产毛片a区内射| 成人午夜免费网站| 日韩欧美亚洲精品在线播放| 亚洲处破女av一区二区中文| 亚洲欧美另类激情| 日韩欧美中文字幕在线一二三区| 亚洲精品久久66国产高清| 国产精品igao视频网| 欧美日韩综合精品无人区| 韩国精品久久久久久无码| 国产午夜福利精品久久不卡| 国产精品一区二区三区四区亚洲| 亚洲精品高潮呻吟久久av| 少妇做爰全过内谢| 人人妻人人爽人人澡人人| 国产成人综合欧美精品久久| 成品片a免费入口麻豆| 亚洲一区二区影视| 日韩欧美精品一区二区三区四区 | 破了亲妺妺的处免费视频国产| 色一情一区二区三区四区+国产| 国产午夜福利久久精品| 亚洲综合国产精品一区 | 97久久超碰精品视觉盛宴| 亚洲欧美综合7777色婷婷| 国产精品久久免费观看spa| 久久久99久久久国产自输拍| 国产欧美日韩综合精品二区| 开心五月激情五月俺亚洲| 琪琪在线影院电视剧免费观看| 99国产热精品主播在线观看| 国产精品亚洲αv| 91久久婷婷国产一区二区 | 亚洲国产最大av| 亚洲无线码在线一区观看| 欧美一区二区视频国产精品| 国内精品久久久久影视| 欧美日韩国产一级片免费网站| 欧美成人精品不卡在线观看| 国产区欧美区日韩区| 国产成人精品18禁三区| 成人av一区二区兰花在线播放| 男人和女人在床的app| 亚αv无码久久久久久不卡网站| 美利坚合众国av| 免费av不卡在线观看 | 亚洲经典千人经典日产| 欧美日韩精品人妻三区东京热 | 黄色av一区二区| 亚洲精品国男人在线视频| 不卡色老大久久综合网| 久久99久久99精品免观看粉嫩| 亚洲熟妇AV一区二区三区| 欧美日韩国产制服精品第二页 | 亚洲国产欧美日韩精品久久久| 欧美+日本+国产在线观看| 久久这里只有是精品23| 亚洲精品国产嫩草在线观看免费 | 99久久综合精品五月天| 亚洲精品一区三区三区在线观看| 国产精品伦视频看免费三| 国产av制服二区三区av系列| 热99国产精品久久久久久久| 色欲麻豆国产福利精品| 99久久综合狠狠综合久久AⅤ| 欧美日本二区三区四区人气| 国产三级视频播放线观看| 伊人色综合久久天天小片| 久久久国产丝袜美女| 乱色熟女一区二区| 日韩69永久免费视频| 乡下借宿的丰满人妻| 日韩人妻无码免费视频一区二区三区| 久久精品国产亚洲av水密被窝| 亚洲高清在线视频| 大帝av在线一区二区三区 | 日韩在线亚洲欧美另类青青| 久久久久久亚洲精品成人| 精品国产亚洲av麻豆gif| 国产老熟女高潮毛片a片仙踪林| 麻豆国产网站入口| 免费+成人+在线观看| 成人无码专区免费播放三区| 国产精品亚洲一区二区在线观看| 亚洲中亚洲中文字幕无线乱码| 漂亮人妻被黑人久久精品| 免费在线观看av| 色婷婷六月亚洲婷婷丁香| 日韩成人免费在线观看| 中文字幕一区二区三区四区视频 | 国产色综合天天综合网| 懂色av蜜臀av粉嫩av分享吧最新章节 | 成人动漫视频在线观看免费高清| 无码h黄肉动漫在线观看网站| 激情五月婷婷久久| 亚洲精品综合在线观看| 北条麻妃一区二区三区四区五区| 国产精品久久久久久a..| 欧美日韩国产三级| 一本色道av久久精品+网站| 久久精品国产久精国产果冻传媒 | 国产精品久久久久久久久久不蜜月| 精品妇女一区二区三区下囿高潮| 国产免费午夜福利久久久| 精品美女免费视频wwxx| 99热这里只有精品九九9 | 无码av大香线蕉伊人久久| 国产精品一区二区人人爽| 亚洲综合小说另类图片五月天| 国产大片内射1区2区| 精品乱人码一区二区二区| 久久婷婷五月综合色99啪ak| av超碰日韩成人在线观看| 日韩亚AV无码一区二区三区| 中文在线字幕免费观看电视剧日剧| 伊人久久成综合久久影院| 国产免费三级现现频在线观看| 国产成人精品午夜福利软件| 91亚洲狠狠婷婷综合久久久| 欧美视频在线观看完整版中文| 日本老头吃嫩草HD| 亚洲欧美精品午睡沙发| 国产av一区二区三区麻豆| 啊灬啊灬轻点第一次和外国人| 国产精品久久久久久久免费绯色 | 日本夜爽爽一区二区三区| 中文日本字幕mv在现线观看| 国产精品嫩草影院久久久| 97精品免费视频| 午夜免费观看视频| 狠狠综合久久av一区二区| 亚洲欧洲一区二区在线观看| 日本三级视频在线| 午夜精品一二三区| 久久婷婷综合99啪69影院| 亚洲精品99在线| 国产99久9在线视频传媒| 亚洲日韩av无码不卡一区二区三区| 国产一线天粉嫩馒头极品av| 蜜桃91丨九色丨蝌蚪91桃色| 国产精品aaaa| 国产伦子伦一级A片免费看刘亦菲| 日韩在线一区高清在线| 农村乱子伦毛片国产乱| 99久久精品费精品国产| 国产一区二区三区在线乱码| 男女污在线亚洲午夜视频| 姝姝窝人体www聚色窝| 狠狠躁夜夜躁人人爽天天天天97| 91丨九色丨尤物| 亚洲s码欧洲m吗国产精品| 别揉我奶头~嗯~啊~少妇| 裸体+光屁屁+露胸| 国产在线观看免费播放电视剧| 日本+欧美+国产| 一本加勒比HEZYO无码| 国产中文字幕免费在线观看| 国产一区二区三区久久久久久久| 久久久久久久99| 亚洲ww44444在线观看| 国产视频资源在线观看| 欧美日韩亚洲综合精品第一页| 在线播放+国产+清纯| 《公妇公侵波多野结衣》_| 亚洲国产精品久久久久福利 | 国产乱淫av蜜臂片免费| 6090新视觉理论电视剧4410yy| 国产免费无遮挡吸乳视频app| 色偷偷噜噜噜亚洲男人| 熟女露脸91Porn| www.免费在线不卡av| 草草网站影院白丝内射| 色八区人妻在线视频免费| 色婷婷亚洲中文在线观看| 无码av永久免费专区麻豆| 日韩国产成人精品视频| 国产无精乱码一区二区三区 | 亚洲精品国产精品色诱一区| 国产69久久久欧美一级| 538prom精品视频线放| 99re视频在线| 日韩美女/一区二区三区| 久久国产精品免费久久久| 日本xxxxl码在中国是几码| 色天天综合久久久久综合片| 啊轻点灬太粗嗯太深了蜜桃av| 亚洲欧美日韩视频一区二区三区| OL超薄肉丝美脚一区二区| 成人乱人伦视频在线观看| 欧美丰满熟妇xxxxx| 秋霞鲁丝片Av无码少妇| 亚洲综合一区和综合二区| 又欲又肉又黄高h1v1| 亚洲色欲色欲欲www在线| 亚洲+先锋影音+图片| 久久精品视频在线免费观看| 成人午夜视频在线观看| 在线+欧美+国产| 日本少妇中文一区在线激情| av片子在线观看| 国产又粗又猛又黄又爽的视频| 拍拍拍无挡免费视频| 日韩在线亚洲欧美另类青青| 丰满熟女人妻中文字幕免费| 水菜丽+sm+磁力链接| 综合久久综合久久| 亚洲AV人无码激艳猛片| 色丁狠狠桃花久久综合网| 在线+成人+日韩毛片| 亚洲国产欧美人成| 亚洲超清丝袜无码网站| 国产视频一区二区在线免费观看| 亚洲av人人夜夜澡人人| 免费人成视频19674不收费| 欧美国产精品国产三级国产AⅤ下载| 91精品久久久蜜桃网站| 在线观看jizz| 丁香开心五月婷婷精品伊人| 亚洲aaaaaaa| 亚洲成色777777女色窝| 99在线成人精品视频| 日本在线一区二区三区欧美| 凹凸69堂国产成人精品视频| 日韩精品一区二区色偷拍| 大波美女一级a久久午夜| 亚洲欧美另类成人综合图片| 亚洲国产欧美日韩在线人成| 中文字幕日产乱码国内自| 中文字幕无线码免费人妻| 亚洲国产精品97久久无色| 吸舌添泬的A片视频| 一边摸一边抽搐一进一出口述| 国产黄片av一区二区三区四区| 2020中文字字幕在线不卡| 精品国产综合久久久久| 韩国三级欧美三级国产三级| 亚洲中文字幕无码中字| 一级国产特黄bbbbb| 国产情侣极品精品一区| 美利坚合众国av| 在线看片免费人成视频大全| 91丨九色丨蝌蚪丰满| 波多野结衣一二三区| 香蕉视频1024| 狠狠躁天天躁日日躁欧美| 久久躁夜夜躁天天躁| 国产精品视频麻豆| 一区二区三天美小说| 天美麻花果冻视频大全英文版| 2022年国产精品一区二区| 翁含着我的奶边摸边做小视频| 亚洲成色777777女色窝| 一本大道AV伊人久久综合| 成人国产一区二区三区精品不卡| 一本在线免费视频| 久久久橹橹橹久久久久手机版| 免费人成视频x8x8日本| 欧美+国产+制服| yy6080亚洲精品一区| 波多野结衣潮喷视频无码42| 丰满大乳班主任趴下让我玩视频| 一级特黄aaaaaa大片| 精品国产综合区久久久久久小说| 免费无遮挡无码永久视频| 欧美日韩视频在线观看免费| 91精品国产综合久久国产大片| 亚洲天堂av在线免费观看| 国产精品爽爽久久久久久豆腐 | 精品国产乱码久久久久久浪潮小说| 麻豆精品免费在线观看视频| 伊人色综合久久天天网| 精品麻豆AV影院| 免费的污污污网站在线观看| 国产又爽又黄又舒服的视频| 中文字幕+乱码+中| xxxx日本免费| 国精品产品区三区| 久久国产精品久久w女人spa| 国产精品一区二区三区四区亚洲| 成人免费毛片AAAAAA片| 国产人交视频xxxcom| 日本理论片免费观看在线视频| 国产+资源+视频播放器| 久久男人av资源网站无码软件 | 亚洲成人精品久久久国产精品| 久久精品国产亚洲精品166m| 91久久精品视频| 亚洲精品丝袜国产自在线| 九色综合狠狠综合久久| 蜜桃视频一区二区三区在线观看| 日韩精品区一区二区三vr| 大香蕉国产在线视频| 久久久久亚洲精品| 偷偷要色偷偷中文无码| 人妻少妇中文字幕乱码| 日韩欧美精品一区二区蜜臀| 18禁真人抽搐一进一出免费| 日韩精品一卡2卡3卡4卡新区| 亚洲精品无码AⅤ中文字幕蜜桃| 《公妇公侵波多野结衣》_| 日韩亚洲欧美中文高清在线| 久久99成人免费| 久久97精品久久久久久久不卡| 国产精品久久久久久久密月| 刘玥亚洲一区二区三区91久久| 国产亚洲综合一区柠檬导航| 重庆美女揉BBBB搡BBBB| 国产美女裸体丝袜喷水视频| 亚洲色大成网站www尤物| 中文字幕日产乱码一二三区 | 亚洲欧美日韩视频一区二区三区| 日韩人妻无码一区二区三区| 精品无人乱码一区二区三区的特点| 中文久久乱码一区二区| 国产伦久视频免费观看| 欧美超碰在线观看| 欧美专区日韩视频人妻| 国产成在线观看免费视频密| 亚洲一区二区精品视频在线观看| 在线日韩日本国产亚洲| 国产高清成人免费视频在线观看| 国产成人精品a视频一区| 肥臀浪妇太爽了快点再快点| 国产精品美女乱子伦高| 国产高清视频在线播放www色| 国产寡妇婬乱a毛片视频| yy111111少妇嫩草影院| 亚洲专区中文字幕| 中文字幕+欧美+日韩| 蜜桃视频+波多野| 欧美污视频免费在线观看| 国产在线观看免费观看99| 视频网站菠萝视频| 美女视频图片久久黄网站| 亚洲国产视频精品一区二区| 久久精品国产只有精品2020 | 欧美一级午夜福利免费区| 99国产综合精品| 欧美一二三区在线观看视频| 国产精品色婷婷久久99精品| 成人网站www污污污网站| 久久婷婷五月综合色国产免费观看| 日本sm一区二区三区调教| 天堂av资源在线| 99久久99久久精品免费看蜜桃| 精品欧美乱码久久久久久| 国产+在线+观看| 国产+欧美+亚洲视频| 免费观看已满十八岁电视剧动漫星辰| 日韩视频一区二区| 在线精品视频一区二区三四 | 18禁美女黄网站色大片免费看 | 美女黄色免费网站| 免费全部高h视频无码软件| 丝袜tk一丨视频vk| 人妻丰满熟妇av无码区app| 丁香五月激情综合亚洲| 亚洲成AV人片一区二区密柚| 日韩欧美成人免费观看| 国产日韩欧美一区| 国产精品亚洲αv| 精品无人乱码一区二区三区的特点| 亚洲+欧洲+日韩在线| 欧美日韩国产一区二区三区精品| 亚洲一区久久精品东京热| av久一区二区国产在线观看| 亚洲中文字幕精品久久久久久动漫| 日韩精品在线毛片| 天海翼+无码+磁力| 青娱乐国产盛宴视频在线观看 | 青青草国产在线视频综合| 好爽好湿好硬好大免费视频| 久久99er精品国产首页| 亚洲精品成人av| 妇女bbbb插插插视频| 苍井空亚洲精品AA片在线播放| 丁香开心五月婷婷精品伊人| 香蕉视频在线观看黄| 欧洲美熟女乱又伦免费视频| 在线观看成人国产三级网站视频| 久久综合亚洲国产精品| 中文在线字幕观看电视剧17.3 | 国产又黄又爽又色的免费| 精品视频在线免费观看一区| 91高清在线视频| 亚洲永久网址在线观看| 最日本中文字幕中文翻译歌词| 国产一级视频免费播放| 欧美+国产+精品| 日本国产精品亚洲专区观看| 2021少妇久久久久久久久久| 91亚洲国产一区二区三区欧美 | 免费+精品+视频| 国产1024成人精品视频| 人妻少妇精品中文字幕av| 亚洲精品无码播放| 久久人人爽亚洲精品天堂 | 日韩一区二区天堂在线观看| 国产高清视频在线| 成人免费无码大片a毛片小说| 欧一美一婬一伦一区二区三区麻婆| 久久伊人精品视频| 欧美视频网站www色| 日本在线观看免费| 国产亚洲成人av| 欧美在线99香蕉在线视频| 一级成人欧美一区在线观看| 夜夜爽8888免费视频| 三级久久久国产精品一区| 久久久噜噜噜久久熟女aa片| 国产91精品久久免費資訊| 亚洲精品国产中文字幕在线| 免费久久99精品国产自在现线 | 色网站在线观看视频| 久久精品国产99国产精2021| 超碰cao12国产在线观看| 99久久国产综合久久精品| 国产精品无卡毛片视频| 美丽人妻被按摩中出中文字幕| 亚洲国产精品一区二区久久阿宾 | 182国产精品视频 | 成人做爰黄A片免费看三区蜜臀| 国产一区二区三区精品在线| 久久精品亚洲毛片美女极品视频| 国产美女精品视频免费播放软件| 手机+在线+精品| 国产又猛又黄又爽| 国产又粗又猛又爽又黄的a视频 | 蜜桃视频+波多野| 久久亚洲精品无码观看不| 免费乱理伦片奇优影院| a级老太婆毛片老太婆毛片| 日本片黄在线观看免费| 久久这里只有是精品17| 少妇特黄A一区二区三区| 二区三区偷拍浴室洗澡视频| 亚洲+中文字幕+人妻| 精品久久久久久亚洲综合网站| 四川少妇BBB搡BBB嗓视频| 国产91高潮流白浆在线麻豆| 国产精品视频一区二区在线观看| caoporn+视频| 亚洲精品乱码久久久久久日本| 成人免费视频一区| 国产+在线+激情| 亚洲成av人片在线观看天堂无 | 波多野结衣精品一区二区三区| 99热热久久这里只有精品| 欧美国产成人免费观看| 奇米777四色成人影视| 99re在线视频这里只有精品| 国产高清在线不卡| 国产福利第一视频| 国产亚洲欧美视频在线观看| 亚洲一区二区三区av免费| 色情无码一区二区三区| 大桥未久+无码+bt| 一区二区三区四区在线播放| 日本韩国欧美一区二区三区| 国产+欧美+熟女| 在线天堂中文www视软件| 久久久精品午夜国产免费| 亚洲欧洲日本在线| 欧美日韩亚洲tv不卡久久| 国产黄色片在线播放| 中文字幕一区三级久久日本| 91久久国产一区二区三区| 最新版天堂中文在线| 国产免费人成视频在线播放播| 日本很黄色的网站一区免费观看| 小芳~婬荡~嗯啊好深视频| 黄色网页在线播放| 国产精品久久久久久四虎| 黑人3p波多野结衣之皇| 国产日产欧产精品精品ai| 91久久精品国产| 国产精品久久久精品三级18禁 | 在线观看av免费| 亚洲麻豆91传媒| 囯产精品久久777777换脸| 日韩国产精品一区二区| 欧洲中文字幕日韩精品成人 | 99久久久国产精品免费99| 欧美日韩成人免费| gav成人网免费免播放器播放 | 亚洲日本中文字幕在线四区 | 亚洲精品免费观看| 国产日韩欧美手机在线视频| 欧美成人看片一区二区尤物| 亚洲精品视频一二三区| 国产精品久久久夜夜高潮夜夜爽| 国产97在线观看| 国产+日韩+在线高清| 国产在线欧美精品| 91大神精品在线| 欧美久久久久久久久久久久久久| 亚洲的天堂av无码| 亚洲视频一区亚洲视频一区| 免费在线观看视频一区二区| 中文字幕+区+页| 伊人久久大香线蕉综合bd高清| 免费看成人aa片无码视频| 日韩美一区二区三区| 国产精品久久久久久久久裸体| 国产欧美日韩亚洲一区二区| 伊人久久精品无码二区麻豆| 亚洲精品久久久久久| 热久久这里只有精品| 尤物九九久久国产精品的特点| 噜噜噜噜香蕉私人| 美女高清久久久久久小视频| 亚洲国产精品久久久毛片| 亚洲欧美动漫卡通另类bt| 丰腴饱满的极品熟妇| 亚洲国产精品乱码在线观看97| 精品人人妻人人澡人人爽牛牛| 国产+日韩+欧美熟女| 9.1在线观看免费网站nba| 啊灬啊灬轻点第一次和外国人| 日日噜噜噜夜夜爽爽狠狠视频| 亚洲熟妇AV一区二区三区| B老骚B老熟B老太中国老骚B| 成人黄色在线视频| 艳妇乳肉豪妇荡乳av无码福利| 97人妻系列高清一区二区| 国产内射一区二区xxx| 欧美区亚洲区国产区一区二区| 丰满人妻做爰2理伦片免费看| 日本护士xxxxhd少妇| 成片在线看一区二区草莓| 免费观看mv大片高清| 精品久久久久久中文墓无码| 五月丁香久久丫婷婷一区不卡| av三级在线播放| 巨乳熟妇一区二区三区| 亚洲精品久久久久久蜜桃| 国产欧美日韩精品一区二区三区| 成人免费无遮挡无码黄漫视频| 妺妺窝人体色www聚色窝| 337p日本欧洲亚洲大胆在线| 亚洲中文字幕无码永久免弗| 夜鲁鲁鲁夜夜综合视频| 欧美两根一起进3p做受视频| 尤物九九久久国产精品的特点 | 久久久精品国产免费观看一区二区| 亚洲国产一区二区波多野结衣| 色偷偷尼玛图亚洲综合| 亚洲综合激情国产一区| juliaann一区二区三区| 美女黄色视频网站在线观看| 他用舌头给我高潮喷水在线| 97人妻成年人视频公开| 9l国产精品久久久尤物av| 在线观看亚洲天堂视频网站| 国产在线一区二区三区乱码| 蜜桃tv一区二区三区| 日韩精品人妻无码久久影院| 欧美日韩国产在线观看| 国产精品久久久区三区天天噜 | 欧美三级少妇高潮| 国产+高潮+免费| 国产+在线+天堂| 日韩欧美亚洲精品高清国产| 美女视频黄的全免费视频网站| 91丨九色丨蝌蚪丰满| 国产精品成av人在线视午夜片| 免费+国产+日本| 2018国产天天谢在线观看| 亚洲国产精品久久久久麻| 久久黄色免费视频| 伦人伦xxxx国语对白| 国产精品自拍在线观看| 17c一.起草看片| www.免费在线不卡av| 熟女人妻av五十路六十路| 一本大道大臿蕉视频无码| 午夜亚洲国产理论片中文飘花| 国产精品久久久久久久久免费下| 欧美又粗又长又色又猛视频| 99精品视频免费版的特色功能| 欧美精品国产制服第一页| 18+sexporn| 日韩国产一区二区三区| 亚洲精品国产专区91在线 | 三级高清日本久久| 日本69精品久久久久999小说| 三年大全免费大片三年大片第一集 | 人人妻天天爽夜夜爽精品视频| 26uuu精品一区二区| 亚洲欧美他妈的射| 国产免费一区二区三区在线观看| 亚洲精品国偷拍自产在线| 精品国产一区二区三区久| 国产日韩欧美在线一区二区三区| 成人精品一区二区三区网站| 99热成人精品热久久6| 久久久久久久久久韩国精品| 91精品国产综合久久福利软件| 中文字幕久久波多野结衣av不卡| 一级美国无码高清| 人人爽亚洲aⅤ人人爽av人人| 亚洲国产精品av在线播放| 影音先锋+川上优| 国产一级片免费观看| 婷婷成人综合一区二区三区| 亚洲人成人无码www| 张柏芝亚洲一区二区三区| 91天天综合免费看国产| 少妇人妻呻吟青椒bobx| 日韩毛片+18+免费看| 最新国产av最新国产在钱| 日本中文字幕亚洲乱码| 又色又爽又黄又无遮挡的网站| 一区视频在线播放| 国产欧美日韩综合在线成 | 亚洲精品第一国产综合麻豆| 熟女乱色一区二区三区91| 久久国产亚洲精品赲碰热| 久久人妻这里有精品视频| 天天天欲色欲色www免费| 儿子+妈妈+磁力链接| 日韩av在线第一页| 亚洲精品久久久久58| 久久精品国产亚洲av水密被窝| 久久老子午夜精品无码怎么打 | 日韩精品免费一区二区夜夜| 色综合久久综合欧美综合网| 国产+精品+在线观看| 91精品众筹嫩模在线私拍| 亚洲欧洲日本国产精品欧洲| 精品国产不卡在线观看免费| 老子影院在线观看理论片| 亚洲第一极品精品无码久久| 国产一区二区在线观看免费视频| 在线成人+欧美+一区二区三区| 免费av不卡在线观看| 大战熟女丰满人妻AV| 久久俺也去丁香综合色| 亚洲精品成人国产黄瓜视频| 清纯粉嫩极品夜夜嗨av| 男女啪啪激情视频免费观看国产| va亚洲va天堂va视频在线| 久久精品亚洲毛片美女极品视频| 国产精品视频播放| 无码区日韩特区永久免费系列| 国产精品永久免费av观看| 国产寡妇精品久久久久久| 成人欧美一区二区国产精品| 中文字幕日产乱码一区| 亚洲欧美在线视频| 免费观看mv大片高清| 国产精品视频在视频| 东京热无码人妻系列综合网站| 国产女人高潮视频在线观看| 久久久这里只有精品10| 草色噜噜噜av在线观看| 亚洲免费av网站| 国产精品精品久久久久久甜蜜软件| 亚洲欧洲国产日韩精彩视频| 国产乱淫av蜜臂片免费| 国语做受对白xxxxx在线| 91九色porny首页最多播放 | 亚洲+自拍+高潮| 国产欧美日韩一区二区三区在线 | 99久久99热这里只有精品| 69做爰高潮全过程免| 国产极品美女高潮抽搐免费网站| 偷玩邻居醉酒人妻| aaa少妇高潮大片免费看| 成年人91日韩视频在线观看| 成人午夜免费网站| 无码+会员+动漫| 欧美成人一区二免费视频小说| 天堂中文在线免费观看视频| 黄页网站免费视频大全9 | 免费av不卡在线观看| 国产成人精品视频国产| 国产色哟哟免费在线观看| 综合色区无码一区| 国产在线看老王影院入口2021| 93国产精品久久久久久| 瑜伽+无码+thunder| 国产视频xxxx| 亚洲欧美精品午睡沙发| 人妻黑人一区二区三区| 少妇伦子伦精品无吗在线观看 | 中文字幕无线乱码人妻| 国产va免费精品高清在线| 久久国产精品免费久久久| 欧美群伦AAAAA片| 亚洲色精品三区二区一区| 久久精品欧美一区二区| 久久精品国产亚洲av成人婷婷| 中文字幕+乱码+中文在线| 波多野结衣一区二区三区av高清| 天堂久久久久va久久久久| 成人无码专区免费播放三区| 亚洲天堂2014| 久久国产熟女这里只有精品| 视频一区二区三区亚洲天堂网 | 99亚洲精品久久久99| 91麻豆国产精品91久久久久| 《美丽妻子替弟还债》剧情| 乱色熟女一区二区| 国产黄色在线网站| 成人精品视频网站| 人人妻人人澡人人爽欧美一区| 中文字幕在线视频免费视频| 国产精品久久久久久久久久蜜臀| 国产三级免费观看| 亚洲欧美韩国日本在线一区二区| 国产又粗又黄又爽又硬网站| 秋霞伦理电院网伦霞| 精品日韩在线播放| 探花视频免费观看高清视频| 狠狠色噜噜狠狠狠狠五月婷| 精品国产亚洲av制服丝袜高跟| 国产一级精品理论片在线| 日韩+欧美+毛片| 国产+欧美+日本在线观看| 欧美亚洲国产精品久久高清浪潮 | 精选一区二区三区免费在线观看| 亚洲制服丝袜中文字幕国产| 国产真实乱偷精品视频| 4虎影院永久地址WWW| 中文毛片无遮挡高清免费| 亚洲三级在线观看| 精品午夜福利1000在线观看| 婷婷五月深深久久精品| 亚洲国产福利成人一区| 国产精品av免费观看| x7x7x7成人免费视频| 亚洲女同精品一区二区| 日韩午夜激情视频| 国偷自产一区二区三区在线视频| 免费黄色网址在线观看| 别揉我奶头~嗯~啊~一区二区三区| 毛片网站免费在线观看| 国产亚洲999精品aa片在线爽| 国色天香成人一区二区| 在线天堂中文www视软件| 午夜福利一区二区三区高清视频| 日韩v欧美v中文在线| 丰满双乳峰白嫩少妇成人网站| 一个人视频在线观看www中文| 欧美在线高清视频| 熟女老阿V8888AV| 中文在线字幕观看电视剧hd| 国产嫩苞又嫩又紧AV在线| 成人做爰黄A片免费看三区蜜臀| 久久久久午夜免费福利视频| 欧美日本一道本一区二区中文 | 中文字幕精品av一区二区五区| 国产成人免费?在线播放| 国产+亚洲+欧洲| 亚洲不卡av一区二区三区| 97久久精品国产一区二区三区| 日韩精品人妻系列无码专区免费| 国产一级av一区二区在线| 无码人妻一区二区三区免费视频| 久久精品国产乱子伦| 欧美综合区自拍亚洲综合绿色 | 国产三级精品三级三级视频| 欧美亚洲日韩国产人成在线播放| 成人午夜片在线免费观看 | 大桥未久+无码+中文字幕| 欧美成人精品区在线观看| 国产一级久久久久久大片| 国产男生午夜福利免费网站| 国产在线精品一区二区在线看| 国产女人18毛片水真多18| 精品国产一区二区三区四区色| 极品av麻豆国产在线观看| 国产+精品+aa| 三年片在线观看免费观看大全+下载 | 最近黄色国产mv在线观看| 国内精品人妻无码久久久影院| 国产l精品国产亚洲区在线观看| 夜夜高潮次次欢爽av女| 少妇人妻大乳在线视频| 五月丁香综合激情| 国产精品极品美女自在线观看免费| 少妇爆乳无码专区| www成人国产高清内射| 三级久久久国产精品一区| 手机无码人妻一区二区三区免费| 一级做a爰片久久毛片16| 欧美成人精品一区二区三区在线看| 无码+四十路+番号| 最日本中文字幕中文翻译歌词| 国产浮力第一页草草影院| 精品中文字幕在线观看| 熟妇槡BBBB槡BBBB| 2022一本久道久久综合狂躁| 福利在线视频导航| 欧美日韩无套内射另类| 美女高潮穿丝袜久久国产精品 | 精品婷婷乱码久久久久久| 99久久超碰中文字幕伊人| 久久久99精品成人片中文字幕| 91啦丨露脸丨熟女| 欧美99热这里都是精品| 一级肉体全黄裸片| 黑外教弄人妻波多野结衣| 99精品国产综合久久久久| 国产精品一区二区久久| 日本成人午夜视频| 国产激情小视频在线观看的| 亚洲日本中文字幕在线四区 | 日韩中文字幕免费| 欧美日韩国产成人| 久久综合婷婷成人网站| 被老师粗大jib捣出了白浆视频| 欧美国产三级一区二区三区| 亚洲色中文字幕无码av| 成人无码一区二区三区网站| 午夜小视频在线播放| 国产伦子伦一级A片免费看小说| 国产一二三四在线视频| 262+母乳+影音先锋| 国产剧情中文字幕一区二区| 草草网站影院白丝内射| 少女18岁免费观看高清电视剧| 91精品啪在线观看国产81旧版| 精品亚洲欧美自拍| 精工厂777免费观看电视剧| 国产成人三级在线视频网站观看| 日本一区二区最黄最色视频| 国产亚洲综合欧美一区二区| 国产VA免费精品高清在线| 国产日韩欧美系列一区二区| 96国产xxxx免费视频| 制服师生中文字幕一区二区| 91精品国产综合久久久蜜臀九色| 日韩乱码在线观看免费视频网站 | 极品人妻少妇一区二区三区| 国产精品夜间视频香蕉酒店| 熟女人妻av五十路六十路| 东北中熟妇高潮50分钟| 国内精品人妻无码久久久影院| 亚洲Aⅴ成人精品一区二区三区| 再深点灬舒服灬太大了快点91| 重囗味sM群虐老女人| 亚洲精品无amm毛片| 国产三级日本三级欧美三级| 久久大香香蕉国产免费网vrr| 日韩三级视频在线观看| 日本高清免费毛片久久| 大地资源二中文在线官网| 一边吃奶一边添p好爽故事| 国产激情久久久久99视频| 亚洲欧美精品伊人久久| 国产99久久久久久免费看| 白丝+美女+高潮| 国产91高潮流白浆在线麻豆 | 一区二区日韩视频| 久久精品麻豆一区二区三区美女 | 高清不卡二卡三卡四卡免费| 无遮挡又色又刺激的视频+黄| 国产激情无套内精对白视频| 国产精品久久久免费| 成人网站免费大全日韩国产| 偷拍+剧情+影音先锋| 国产精品久久久久久久久动漫| 一本色道久久HEZYO无码| 朝鲜女人大白屁股ass| 国产成人一区二区三区在线播放 | 亚洲欧美视频在线观看| 亚洲国产精品成人久久久久| 婷婷五月开心亚洲中文字幕| 中文字幕丰满乱子无码视频| av中文字幕+潮喷+在线观看| 国产午夜在线播放| 国产又黄无遮挡在线观看| 四虎影视无码永久免费| 国产va免费精品高清在线| 美女主播福利视频一区二区| 午夜影视在线观看免费| 青青草国产免费国产是公开| 人人爽人人奭人人片AV| 色视频免费在线观看| 国产精品国产馆在线真实露脸| 波多野结衣被躁50分钟| 中国熟妇XXXX18| 国产99久9在线视频传媒| 国产欧美va天堂在线观看视频下载| 国产三级一区二区三区视频播放 | 亚洲国产天堂视频在线播放| 免费无码黄网站在线观看| 97se亚洲精品一区二区| 日本在线观看一区| 欧美婷婷六月丁香综合区| 初撮五十路人妻熟女| 忘忧草www中文在线资源| 亚洲成人日韩高清在线观看| 中文在线字幕免费观看电视剧日剧| 99久久免费精品国产72精品九九| 蜜桃视频一区二区三区在线观看| 在线天堂新版资源www| 噼哩噼哩国语免费播放| 伸进她的小内裤疯狂揉摸漫画| 国产成人精品无缓存在线播放| 国产视频又黄又粗又爽又猛| 久久精品国产亚洲av高清观看 | 91亚洲欧美中文精品按摩 | 无码一区二区三区视频| 久久男人av资源网站无码软件| 国产情侣在线播放| 日韩中文字幕免费| 亚洲一区二区三区高清在线看| 国产精品不卡av在线播放| 日韩欧美+亚洲+国产| 日韩东京热无码免费视频| 久久精品国产成人av| 国产一区二区三区成人欧美日韩在线观看 | 美女黄网站免费福利视频| 国产精久久久久久一区二区三区| 窝窝人体色WWW聚色窝欲女吧| 99久久精品无码一区二区免费 | 免费精品成人在线永久观看 | 免费专区丝袜调教视频| 久久婷婷国产剧情内射白浆| 国产精品亚洲欧美一区二区| 精品国际久久久久999波多野| 久久综合久久自在自线精品自| 97caoporn国产免费人人| 嫩草影院在线观看高清完整版| 4k超清JAV无码| 天堂视频入口免费在线观看 | 国产欧美日韩视频在线观看| 日本欧美大码a在线观看| 公共场合高潮(h)公交车| 黄师傅AV一区二区| 久久人人97超碰caoporen| 国产精品久久久久久久久久久免费看 | 亚洲精品久久久日韩美女极品 | 色综合久久88色综合天天人守婷| 99精品国产免费| 特级西西444WWS高清视频 | 高清+免费+国产| 国产高清免费在线观看精品| 亚洲阿v天堂无码z2018| 亚洲乱码国产一区三区| 日韩欧美国产aⅴ另类| 日本地区不卡高清更新二区| 中文字幕+乱码+无忧| 91福利院一区二区三区| 中文乱码字幕视频观看网站免费| 99国产超薄肉色丝袜交足的后果 | 三级慰安女妇威狂放播| 国产精品一区二区av影视| а√中文在线资源库| 97无码精品综合| 美女极度色诱图片www视频| 国产精品视频麻豆| 国产亚洲精品久久久久久无| 亚洲无线观看国产精品| 国产高潮又爽又刺激的视频免费| 一本大道东京热无码aⅴ| 国产一级片免费在线观看| 最新国产av最新国产在钱| 玖玖精品在线视频| 国产目拍亚洲精品99久久精品| 国产成人av三级在线观看| 亚洲乱码中文字幕综合234| 最近最新中文字幕大全直播| 漫画免费观看漫画大全| 日韩在线一区二区三区免费视频 | 成人精品网站在线观看| 中出老熟女中文字幕| 吸乳18禁羞羞二区三区| 精品国产丝袜黑色高跟鞋美女| 日韩毛片+18+成人网| 欧洲视频免费网站在线播放| 精品少妇一区二区三区在线观看 | gogogo高清在线播放免费观看如果奔跑是湘 | 美女被草+在线观看| 国产午夜精品一区二区芒果视频| 日韩高清中文字幕| 四虎影视精品永久免费久久久二| 美女主播一区二区不卡视频| 国产激情视频免费在线观看| 黑人精品一区二区| 久久久精品人妻久久影视| 97精品国自产在线偷拍| 97精品人妻一区二区视频| 日本+视频+亚洲| 精品国产乱码一区二区三区99| 亚洲精品国偷拍自产在线| 久久99热这里只有精品国产| 亚洲国产精品va在线看黑人| 卧室大战欧美肉丝丝袜| 亚洲一区二区三区激烈免费视频| 国产精品一区二区久久乐夜夜嗨| 成人免费观看cn| 九九在线观看免费播放大全电视剧| 18+在线看视频| 99在线视频一区二区三区| 午夜福利人妻专区一区二区| 色综合久久久久久| 韩国真做片在线观看国产初高中生videos| 视频毛片下载蜜桃视频1| 午夜精品福利免费在线观看| xnxx女第一次| 国产精品国产成人国产三级 | 国产一卡2卡3卡四卡精品国色无边 | 天堂av资源网在线观看| 日韩裸体人体欣赏pics | 国产精品欧美激情一区二区三区 | 亚洲欧美日韩中文无线码| 免费观看又色又爽又黄的崩锅 | 人妻av中文字幕久久| 国产少女免费观看电视剧| 亚洲美女视频之国产精品| 最新精品国偷自产在线老年人| 国产成人精品视频国模| 91日本人妻精品一区二区| 成人年人免费看xxxxxxx| 国产女主播精品大秀系列| 精品中文字幕免费在线观看| 伊人久久精品亚洲午夜| 国产+白浆+免费| 成人日韩欧美视频在线观看| 国产精品欧美一区二区三区喷水| 一个人看www在线视频| 授乳喂奶av中文在线| 人妻丰满熟妇av无码区app| 97久久精品国产一区二区三区| 麻豆国产一区二区三区| 麻豆激情久久av| 亚洲精品在线观看丝袜制服| 亚洲综合色噜噜狠狠网站超清| 6080午夜福利视频在线观看免费| 久久久91精品国产一区二区精品| 久成人免费精品xxx| 夜夜嗨人妻av一区二区三区| 夜夜嗨av一区二区三区| 粉嫩BBBBBBBBB精品| 国产精品主播一区二区三区| 儿子+妈妈+磁力链接| 亚洲制服国产丝袜综合四季av| av狠狠色丁香婷婷综合久久| 初撮五十路人妻熟女| 西西人体大胆无码视频| 亚洲日韩精品区二区av| 国产精品情侣熟女毛片对白看片| 天天躁日日躁狠狠躁av中文| 白浆+国产+高潮| 欧美在线人视频在线观看| 亚洲ww44444在线观看| 日韩精品免费视频| 最近中文字幕在线视频8| 精品卡一卡二卡3卡高清乱码| 天堂一区二区在线免费观看| 亚洲人成人网色www| 摸bbb揉bbb揉bbb视频| 亚洲狠狠婷婷综合久久久久图片| 台湾av+在线播放| 女人被爽到高潮免费视频国产| 久久久综合久久久| 日韩精品一区在线观看视频| 78色淫网站女女免费| 日韩又大又长又粗又硬又爽视频| 公侵犯美丽人妻一区二区| 精品人妻毛片久久久久久| 亚洲情a成黄在线观看动| 激情综合亚洲色婷婷五月app| 人妻少妇精品视频一区二区三区| 日本人妻人人人澡人人爽 | 亚洲精品视频一区二区| 国产99久久久久久免费看农村| 人妻在线日韩免费视频| 国产白丝jk捆绑束缚调教视频| 亚洲国产精品久久久毛片| 亚洲国产精彩中文乱码av| 在线观看国产色视频网站| 夜夜嗨av一区二区三区四季av| 欧美在线色视频在线观看 | 91精品啪在线观看国产81旧版| 欧美+高清+喷水| 国产情人综合久久777777| 欧美污视频在线播放网址| 亚洲综合久久成人av| 国产欧美日韩视频在线观看| 白浆+高潮+免费| 国产精品久久久久久久模特人妻| 无码综合天天久久综合网| 亚洲精品久久酒店| 青娱乐精品视频在线观看| 999国产精品午夜福利| 永久免费精品精品永久| 激情五月婷婷久久| 中日韩国产高清在线观看| 好吊妞视频这里有精品| 激情一区二区三区| 国产成人精品亚洲午夜| 波多野结衣无码一区二区| 亚洲欧洲精品成人久久av18| www九九热com| 偷拍+剧情+影音先锋| 天天av天天爽无码中文| 国产一区二区三区在线免费| 无码AV最新无码AV专区| 亚洲精品在看在线观看高清| 亚洲天堂av一区二区三区| 日韩v亚洲v欧美v精品综合| 国产1024成人精品视频| 人妻ⅰapanfreehd人妻| 18禁美女无遮挡在线看 | 成人国产免费视频| 无码aⅴ精品一区二区三区浪潮 | 91无人区乱码卡一卡二卡| 国语对白刺激真实精品91| 在线免费观看尤物色视频网站| 在线观看国产精品冒白浆| 免费人成在线观看网站免费观看| 最近黄色国产mv在线观看| 亚洲欧美综合7777色婷婷| 精品国产v一区二区三广区| 日本高清视频一区二区三区| 久久www人成免费看片中文| 日韩亚洲欧美亚洲欧美亚洲国产| 18+泰剧+日韩毛片| 国产精品黑色丝袜在线观看| 狠狠躁夜夜躁人人爽天天bl| 91麻豆短视频免费观看| 亚洲视频一区二区在线看| 先锋影音+中文字幕| 亚洲精品手机在线观看| 宅女午夜福利免费视频| 午夜视频在线在免费| 国语对白刺激在线视频国产网红| 亚洲最大视频在线免费观看| 97SE亚洲精品一区| 欧美+日韩+国产精品| 色五月五月丁香亚洲综合网| 国产传媒麻豆剧精品av| 91精品福利在线观看| 九九热在线精品视频| 国产精品剧情在线中文字幕| 亚洲人妻在线播放| 在线观看国产小视频网站| 国产女人18毛片水真多18| 国内精品在线播放| 国产大片内射1区2区| 日韩和的一区二在线| 一区二区三区无码按摩精油| 国产成人高清免费在线观看| 精品国产又粗又猛又爽又黄 | 国产+免费+综合| 1000部丰满熟女富婆视频| 久久久噜噜噜久久久午夜| 91九色在线视频| 《金莲淫史》全黄| 白浆+喷水+国产| 精品国产一区二区三区日日嗨| 一本之道色综合网站| 国内精品在线播放| 91亚洲欧美日韩国产综合| 欧美色欧美亚洲日韩在线播放| 久久久久久久无码高潮| 先锋影音男人av资源| 久成人免费精品xxx| 超碰香蕉人人网99精品| 中文字幕一区二区精品区| 免费香蕉成视频人网站| 在线欧美精品一区二区三区| 日本www在线观看| 色偷偷尼玛图亚洲综合| 岛国在线观看网站| 影音先锋+写真+日韩| 已满十八岁免费观看电视剧软件下载| 有码+日韩+在线观看| 亚洲欧美在线中文字幕在线观看| 雯雯的肉奴生活1—48| 国产+高潮+视频| 91麻豆精品国产自产在线的| 亚洲乱码在线观看| 久久久成人精品av四区| 人+国产片+综合| 东京热久久综合日韩精品| 中文字幕乱码av一区二区三区 | 已满十八岁免费观看电视剧软件下载 | 国产亚洲精品久久www| 韩国n号房视频+在线观看| 久久天天躁夜夜躁狠狠85| 9.1在线观看免费网站nba| 麻豆天美国产一区在线播放| 99久久免费国产精品6| 国产传媒在线播放| 日韩精品视频在线观看一区二区| 少妇无码av无码去区钱| 国产精品手机视频| 喷水+高潮+白浆| 国产日韩欧美系列一区二区| 81精品久久久久久久婷婷| 国产精品久久久久久久竹霞| 一亚洲区二区三区精品无码| 99久久久久久国产精品| 色网站在线观看视频| 国产精品一区二区av麻豆| 四川女人毛多水多A片| 国产美女遭强高潮网站一区二区 | 全程露脸老熟妇双飞| 欧洲无线码免费一区| 无码人妻精品中文字幕不卡| 少妇张慧献身1一5集在线播放 | 巨大乳の揉んで乳榨り男女男| 亚洲欧美日本在线观看视频| 国产sm重味一区二区三区| 国产精品自拍合集| 国产+喷水+白浆| 人妻无码一区二区19p| 思思久热精品在线| 99久只有精品免费视频播放| 麻豆国产网站入口 | 精品成人乱色一区二区| 亚洲欧美日韩在线观看一区二区三区| 国产精品18久久久久久人| 国产高清成人免费视频在线观看| 在线+中文字幕在线观看| 丁香六月婷婷激情免费视频| 人妻无码中文专区久久av| 中文字幕+乱码+中文在线| 国产又黄又爽又色视频免视频| 亚洲午夜久久久久久久国产| 真实新婚偷拍Chinese| 一区二区三区四区黄色片 | 少妇奶水亚洲一区二区观看| 一级大片在线观看| 又粗又黄又爽视频免费看| 国产激情美女久久久久久吹潮| gogogo高清国语完整| 成人免费在线观看h视频| 午夜精品久久久久久不卡| 亚洲视频一区二区在线看| 国产精品久久久久久久竹霞| 日韩欧美+亚洲+国产| 国产欧美精品一区| 久久久久青草大香综合精品| 国产末成年av在线播放| 亚洲欧美日韩国产精品网| 亚洲国产高清在线一区二区三区 | 国产综合亚洲区在线观看| 淫臀艳妇(全)王雪琴| 日日噜噜夜夜狠狠久久av小说| 亚洲第一美女精品久久久久| 极品s级大美女国产精品| 青草av.久久免费一区| 国产一区二区三区精品综合| 国产91久久婷婷一区二区| 少妇熟女视频网站一区二区三区 | 国产成人av三级在线观看| 亚洲AV成人片无码| 成人网站免费大全日韩国产| 免费播放高清毛片A片色情天雨水多 | 欧美一级免费在线观看视频最新| 国产美女视频一区二区三区| 91久久国产综合精品女同国语 | 自拍偷自拍亚洲精品10p| 色噜噜狠狠色综合日日| 精品黑人一区二区三区| 99亚洲精品在线视频观看| 韩国国内大量揄拍精品视频| 99久久久精品国产美女| 成人免费黄色大片| 99在线成人精品视频| 西西444WWW无码视频软件功能介绍 | 偷拍激情视频一区二区三区| 国产精品一区波多野结衣| 欧美亚洲人成在线观看网站| 欧洲一区二区成人| 牛牛在线免费视频| 精品欧美一区二区精品久久| 成人在线观看一区| 91亚洲国产成人精品久久久 | 亚洲一区在线免费| 亚洲不卡av一区二区三区| av片子在线观看| 久久老熟女一区二区福利蜜臀| 视频一区二区三区免费| 窝窝午夜色视频国产精品破| 亚洲手机在线人成网站| 美丽人妻被按摩中出中文字幕| 日韩欧美亚洲精品在线播放 | 永久av免费在线观看| 日产精品一二三四区国产| 三级高清中文欧美| 人妻丰满熟妇av无码区app| 97国产精品久久| 美女很骚的视频网站国产| 无码+四十路+番号| 日本一区二区三区专线| 四虎永久在线精品免费视频观看| 2021国产精品久久久久k8| 中国猛少妇色xxxxx| 精品视频在线观看一区二区| 阿v天堂一区二区在线观看 | 欧洲日韩亚洲无线在码| 果冻天美麻豆一区二区国产 | 亚洲无码视频一区| 亚洲日韩久久综合中文字幕| 无码人妻精品一区二区三区9厂 | 亚洲+变态+欧美| 亚洲国产成人久久久网站| 亚洲中文成人中文字幕| 国产sm鞭打调教女m视频| 操美女视频国产免费观看 | 淫色一非一区二区朝鲜| 亚洲视频精品久久久| 又大又紧又粉嫩18p少妇| 国产在线一区二区三区四区五区| 免费日本久久a视频一区二区| 狂躁少妇XXXX高潮无码| 天堂在线一区二区| 欧美一区二区影院| 亚洲国产午夜精品理论片妓女| 怡红院一区二区三区在线| 国产97人人超碰cao蜜臀| 亚洲+小说+欧美| 国产在线高清精品二区| 亚洲国产精品综合久久网各| 国产精品一区二区三区成人| 18禁国产精品久久久久久网站 | 国产福利资源在线| 国产精品色婷婷久久99精品 | 另类图片+动漫+日韩| 日本www在线播放| 亚洲永久精品ww47| 日韩美一区二区三区| 国产精品夜间视频香蕉酒店| 国产+日韩+欧美熟女| 天堂资源wwwav啪啪| 高清无码不用播放器av| 最近在线更新8中文字幕免费| 午夜国产av新品一区二区| 《朋友的妈妈2》中字头歌词华丽的外出| 欧美精品一区二区视频| 日韩av在线第一页| 久久亚洲色一区二区三区| 亚洲av乱码国产精品观看麻豆| 人妻黑人一区二区三区| 亚洲福利视频在线| 麻豆国产丝袜白领秘书在线观看| 丁香婷婷六月综合交清| 最新欧美激情视频一区二区三区 | 九一麻花传剧mv在线看免费| yy6080亚洲精品一区| 999在线观看精品免费不卡网站| 亚洲午夜国产一区99re久久| 91香蕉国产线观看免费永久| 痴汉电车人妻被内谢下面很多水| 亲密+磁力链接+下载| 亚洲AV综合在线| 国产大片免费观看网站| 毛片国产精品完整版| 一区二区三区国产乱码a| 18+动漫视频网站| 影音先锋+写真+日韩| 免费人成视频x8x8日本| 雯雯的肉奴生活1—48| 亚洲专区在线91福利网| 久久九九久精品国产| 国产乱人伦精品一区二区三区| 免费成人进口网站| 97久久超碰精品视觉盛宴| 日韩中文字幕免费| 色一情一乱一乱一区免费网站| 国产边打电话边做对白刺激| 欧美成人高清视频a在线看| 日日摸日日碰人妻无码 | 国产免费的又黄又爽又色| 男人的天堂免费视频| 欧美日韩国产在线人成| 日韩精品视频免费看| 久久伊人精品视频| 欧美日韩国产欧美日美国产精品| 手机在线免费观看毛片av| 最新国产精品拍自在线观看 | 網友分享色婷婷色99国产综合精品心得 | 少妇无码自慰毛片久久久久久| 亚洲精品456在线观看第一页| 亚洲欧美在线中文字幕在线观看| 亚洲精品456在线观看第一页| 成人做爰a片免费看网站网豆传媒| 一区二区免费国产在线观看| 免费+高清+国产| 原创婹农村熟女v88Av| 亚洲精品女同激情在线观看| 一区二区国产日韩欧美综合| 伦视频中文字幕亚洲天堂网| 人妻丰满熟妇av无码区不卡| 最近黄色国产mv在线观看 | 成人免费无遮挡无码黄漫视频| 99久久精品免费国产亚洲| 免费福利视频网站一区二区三区 | 欧美日韩激情在线观看免费| 精品人妻伦一二三久久18禁| 国产又爽又黄又粗又硬视频| 久久亚洲精品中文字幕无男同 | 美女十八禁在线无遮挡免费看| 青青草无码精品伊人久久蜜臀| 2021久久超碰国产精品最新| 91黄视频在线观看| 不卡无码人妻一区二区| 下岗美妇的肉唇1一7章视频| 西西4444www无码精品| 97国产欧美人人爽人人做| 人妻中文字幕一区三区5| 久久精品国产亚洲Av久| 亚洲亚洲人成网站网址| 日本三级高清视频| 91精品视频在线看| 日韩精品一区二区在线观看| 国产三级精品三级三级视频| 国产午夜福利精品理论片| 国产经典一区二区三区| 成年人视频免费在线观看| 亚洲精品乱码久久久久久| 亚洲香蕉中文日韩v日本| 久久久久久老熟女国产999| 影视av久久久噜噜噜噜噜三级| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | av人人爽日日碰| 在线免费看av网站| 被拉到野外强要好爽黑人| 国产+午夜福利+久久精品| 国产精品久久精品免费视频| 久久www免费人成看片高清| 国产视频资源在线观看| 国产内射xxxxx在线| 吸乳18禁羞羞二区三区| 国产精品久久久久久久成人av| 黄色免费av网站| 国产又黄又爽又色的免费| 人妻丰满熟妇av无码区App| 熟妇人妻无乱码中文字幕真矢织江| 久久99久国产麻精品66| 四虎+网站+影院+网站| 国产精品久久久久久久无毒| 婷婷精品久久久久久久久久不卡| 成人国产精品免费观看| 亚洲欧美日韩国产91在线| 日本人乱人乱亲乱色视频观看| 免费午夜无码18禁无码影院| 一级美国无码高清| 婷婷丁香俺来也久久一区二区| 国产美女视频免费观看的网站| 欧美xxxxx做受vr91九色| 先锋+视频+国产精品| 最新日韩中文字幕| 极品av+美女+黑丝| 成人免费视频538国产网站| 天天爽夜夜爽夜夜爽精品视频| 人人射欧美一区二区三区| 欧美日韩国产精品| 真实乱偷全部视频| 国产精品一品二区三区四区18| 日本不卡在线视频二区三区| 成人黄色在线观看| 天堂av无码大芭蕉伊人av孕妇| 国产99视频精品专区| 制服师生中文字幕一区二区| 欧美一级视频免费观看| 视频毛片下载蜜桃视频1| 久热这里只有精品99在线观看| 中文区中文字幕免费看| 久热香蕉最新精品视频在线观看| 国产新婚夫妇叫床声不断| 巨乳熟妇一区二区三区| 欧美一区二区影院| 欧美孕妇孕交xxx| 亚洲精品一区二区国产精华液| 日韩欧美三级在线| 国产又爽又黄无遮挡免费视频| 国产白嫩护士被弄高潮| 精品熟妇av一区二区三区四区| 色哟哟免费视频播放网站| 亚洲香蕉中文日韩v日本| 亚洲欧美一区二区三区四区五区| 国内精品在线观看看| 日本亲子乱子伦xxxx60岁| 国产噜噜噜精品免费视频| 中文字幕免费播放| 中国极品少妇XXXXX1314| 亚洲hdmi高清线| 最近最新mv字幕免费观看| 99精品在线观看中文字幕| 亚洲一区国产一区| 精品国产不卡在线观看免费| 亚洲国产日韩视频观看| 国产在线不卡精品网站| 日韩在线一区高清在线| 中文字幕精品久久久久人妻| 午夜福利一区二区不卡| 18禁黄网站男男禁片免费观看| 91精品人妻麻豆一区二区| 免费午夜无码18禁无码影院| 内射老太太b里面| 国产精品igao视频网| 国产精品99久久最新视频| 91在线喷水白浆| 中文字幕免费播放| 蜜桃视频+波多野| 国产精品丝袜www爽爽爽| 亚洲精品字幕在线观看1| 欧美一区二区三区视频| 日韩第一页视频在线观看| 狠狠色噜噜狠狠狠777米奇小说| 日本国产精品亚洲专区观看| japanese色国产在线看免费| 亚洲精品久久久久中文第一幕 | 精品美女自拍99RE热视频这里只精品| 天堂√最新版中文在线地址| 男人午夜免费视频观看在线| 国产精品线在线精品| 久久中文字幕无码一区二区| 777久久久风间由美中出| 国产精品国产三级国产有见不卡| 六十路初撮り完熟在线| 午夜日本永久乱码免费播放片| 国产日韩欧美不卡在线二区| 国产白丝护士av在线网站| 亚洲欧洲精品一区二区三区| 久久99久久精品播放免费| 亚洲精品456在线观看第一页| 天天综合亚洲色在线精品| 亚洲视频在线免费观看一区二区 | 日本一区二区三区专线| 国产亚洲又爽ⅴa在线天堂| 免费+国产+视频| 一区二区三区精品视频| 农村末发育av片一区二区| 成人免费毛片AAAAAA片| 国产区在线观看视频| 美女动态视频久久久久久久久久| 日本+欧美+国产| 五月天天爽天天狠久久久综合| 国内精品久久久久久影院| 一区二区三区四区欧美极品| 国产乱子精品免费视观看| 国产女人18毛片水真多成人如厕| 狠狠躁夜夜躁人人爽天天不卡 | 又欲又肉又黄高h1v1| 青青青国内视频在线观看软件| 日韩三级伦理片色呦呦中文字幕| 午夜av一区二区三区| 黄网站在线免费永久观看| 国产+免费+麻豆| 日本高清免费毛片久久| 新无码毛片一区二区有码| 久久精品国产亚洲七七 | 国产精品99久久久久久有的能| 人妻双飞互换不戴套| 99久久久久久99国产精品免| 激情无码人妻又粗又大中国人| 久久精品视频在线免费观看| 美女+人妻+日韩毛片| 久久久久久久人妻无码中文字幕爆| 久青青在线观看视频国产| 91精品aa一区二区三区| 欧美亚洲日本国产爽快片| 黄色精品一区二区三区| 特级婬片A片AAA毛片咕噜咕噜| 毛片在线免费视频| 欧美丝袜诱惑一区二区三区| 精品国产乱码久久久久久88av| 免费在线观看视频一区二区| 久久五十路丰满熟女中出| 成人午夜精品无码区久久| 亚洲美女中字幕视频在线观看| 午夜国产精品入口| 特级西西444www大胆免费看| 久久精品免费国产大片| 国产精品一v二v在线观看| 99久久久久免费精品国产| av天堂午夜精品一区二区三区| 少妇熟女视频网站一区二区三区| 国产又猛又黄又爽| a一区二区三区乱码在线 | 亚洲+欧美+综合| 日韩a∨精品日韩在线观看| 伊人色综合久久天天网| 国产成人综合久久免费| 欧美日韩国产三级| 国产精品国产自线拍免费软件| 亚洲色大成网站www尤物| 久久久久夜色精品国产av| 中文字幕乱码中文ktv| 免费观看成年人网站| www.日韩免费观看视频| 国产+资源+视频播放器| 在线亚洲97se亚洲综合在线| 久久99精品久久久久久噜噜| 黄金网站app大全免费| 手机av在线不卡| 国产精品亚洲а∨天堂123| 亚洲韩国日本va精品国产一区 | 婷婷丁香俺来也久久一区二区| 日本+欧美+国产| 一区二区三区免费看| 风流少妇野外精品视频| 主播大秀一区二区三区| 天天干天天干天天干| 国产成人av乱码免费观看| 综合久久综合久久| 国产+在线+超碰| 色婷婷综合缴情综在线播放| 2020天天谢天天吃天天麻豆v| 无码av中文一区二区三区| 国产又大又长又粗又硬又爽| 亚洲制服丝袜一区二区三区 | 欧美日韩一区二区三区妖精| 黄色亚洲一区二区三区视频| 无码+蓝衣+磁力| 国产+欧美日韩+一区二区三区| 国产精品二区一区二区aⅴ污介绍 欧美精品v欧洲高清视频在线观看 | 国产+欧美+熟女| 午夜av一区二区三区| 久久精品国产自清天天线| 国产精品永久免费av观看| 啊灬啊灬轻点第一次和外国人| 国产精品久久久久久久久久| 免费看的av网站| 亚洲精品一区二区三区不| 精品国无人区一品二品三品的特点| 中美日韩亚洲中文专区| 在线bt天堂网.www最新版| 欧美大片免费播放器| 国产色播色爽看到爽| 亚洲+欧美+综合| 免费+精品+国产| 国产九九久久99精品影院| 亚洲一卡二新区乱码绿踪林| 99re6在线观看| 国产精品主播在线| 国产乱码一区二区三区门上区| 国产探花视频在线观看网址 | 国产精品入口免费软件| 国产人妻精品久久久久野外| 久久亚洲精品国产精品| 黄色软件网站入口| 久久精品视频在线看4| 中文字幕在线永久视频2018| A片女女女女女女BBBB| 午夜激情福利视频| 老熟女北岛玲Ⅴ8AV| 绯色AV色窝窝无码久久免费酒店| 日韩亚洲欧美亚洲欧美亚洲国产| 欧美激情一区二区三级高清视频| 久久亚洲色一区二区三区 | 在线看人妻视频中文字幕| 公共场合高潮(h)公交车| 国产亚洲精品久久久久久大师| 少妇又色又爽又刺激视频| 手机在线看片1024| 无码丰满熟妇一区二区| 国产精品综合第56页| 尤物在线观看免费网址| 欧美+国产+综合| B老骚B老熟B老太中国老骚B| 国产精品久久久久久粉嫩影视| 97超级精品综合网| 国产+高潮+精品| 免费成人午夜福利在线观看| 精品国产一区二区三区久久久久| 在线观看亚洲天堂视频网站| 久久免费黄色网址| 秋霞无码久久一区二区| 美女网站一区在线观看免费国产 | 成人影视在线看18| 论坛+视频+无码| 欧美大片ppt免费2023| 国产在线无遮挡免费观看| 丁香五月婷激情综合第九色| 美女视频一区二区| 欧美精品v欧洲高清视频在线观看| 国产黄色在线网站| 亚洲经典千人经典日产| 99久久精品6在线播放| 久久精品无码手机观看| 亚洲国产高清av网站| 中文字幕国产精品日韩精品动漫| 精品日韩一区二区五月天| 亚洲精品9999久久久久| 肉大榛一进一出免费视频| 国产精品美女久久久久久久久| 无码人妻精品一区二区蜜桃网站| 中文字幕+乱码+中文字幕av| 亚洲国产精品+嫩草影院+久久| 午夜欧美福利视频一区二区| 国产精品伊人久久久久久 | 91国產乱高潮白浆| 欧美超猛烈一区二区三区| 国产在线看片免费观看| 天堂av2020| 17c一.起草看片| 精品一区二区三区三区| 99久久综合精品五月天| 亚洲天堂成人在线观看| 亚洲人交乣女bbw| 噜噜噜狠狠色综合| 亚洲一卡二卡三卡四卡免费视频 | 中文字幕亚洲无线码| 日韩精品一区二区三区+在线观看| 婷婷激情五月天综合丁香社区| 欧美日韩在线视频免费播放| 欧美成人一区二免费视频| assfree疯狂老妇熟女| 日韩精品+一区二区+av在线| 99久久有精品国产婷婷外女| 日韩黄色一级网站| 欧美视频在线观看一区| 黑人外教人妻HD中字| 亚洲无AV在线中文字幕| www国产国人免费观看视频| 精品www久久久久久奶水| 中美日韩亚洲中文专区| 可以免费看日本黄色的网站| 亚洲精品无码久久不卡| 18+成人在线观看| 国产精品亚洲一区二区在线观看| 日韩中文在线播放| 久久无码人妻一区二区三区| 国内精品麻豆美女在线播放视频| 国产精品亚洲一区二区在线观看 | 欧美日韩黑人老熟妇中文字幕| 成人做爰高潮片免费视频| 国产精品久久久久久av福利| 亚洲AV成人片无码| 免费大香伊蕉在人线国产| 成人一区在线观看| 人妻无码少妇一区二区| 中文人妻无码一区二区三区信息| 日本乱妇乱子视频网站| 国产精品二区一区| 女人的天堂a国产在线观看| 日韩精品a片一区二区三区妖精| 91国偷自产中文字幕久久| 欧美日韩国产一区二区三区精品| 国内揄拍国产精品| 善良娇妻让公泄欲| 国产乱人伦精品一区二区在线观看| 免费黄色小视频在线观看| 天堂欧美在线观看www| 国产三级aⅴ在在线观看| 国产黄片av一区二区三区四区| 欧美一区二区三区在线视频观看| 久久这里只精品国产免费99| 国产美女久久久久久久久久久久| 日韩欧美中文字幕在线视频| 国产精品成人亚洲777| 国产情人综合久久777777| 论坛+视频+无码| 骚虎成人免费99xx| 久久av无码aⅴ高潮av喷吹| 丝袜无码一区二区三区| 欧美激情精品久久久久久| 免费看无码网站成人A片| 国产精品亚洲综合久久系列| 亚洲一区二区三区激烈免费视频| 成年男女免费视频网站| 久久久精品国产精品国产网站 | 国产精品无套呻吟在线| 欧美日韩在线视频一区| 西西4444www大胆高清图片| 国产成人av综合久久视色| 亚洲视频在线免费观看一区二区 | 丁香啪啪综合成人亚洲小说| 摸bbb揉bbb揉bbb视频| 成年人网站免费看| 久久精品国产亚洲av久野外| 丝袜tk一丨视频vk| 国产传媒淫语对白AV| 99欧美日本一区二区留学生| 亚洲精品视频在线观看网址网站| 国产av精国产传媒| 91在线/一区二区三区| 亚洲一卡二卡三卡四卡无卡姐弟 | 免费观看mv大片高清| 午夜福利国产精品久久| 免费在线观看91精品美女| 日韩免费一区二区三区| 久久人人爽天天玩人人妻精品| www国产+欧美| 8090成人午夜精品无码 | 欧美成人Ⅴ片在线观看| 亚洲婷婷五月综合狠狠app | 日韩欧美一区二区在线观看视频| 日韩精品人妻系列无码专区免费| 欧美精品亚洲国产| 成人免费国产精品视频| 国产精品又爽又粗又长又硬| 忘忧草www中文在线资源| 亚洲成a∨人片在线观看不卡| 麻豆果冻传媒精品+视频| 亚洲一区二区精品视频在线观看 | 人成午夜大片免费视频| 成人a大片在线观看| 精品国产污污免费网站入口自| 欧美日韩在线四区| www.欧美在线观看| 老熟妇午夜毛片一区二区三区| 精品国产亚洲av麻豆gif| 蜜臀av在线播放一区二区三区| 真实国产精品视频400部| 182tv午夜福利| asian日本若图pics| 久久亚洲春色中文字幕久久久| 视频一区二区中文字幕在线| 久久婷婷综合激情亚洲狠狠| 国产精品自在拍首页视频8| 亚洲日韩欧美视频| 国产91麻豆一区二区在线| 中文字幕人妻在线中字| 一级国产特黄bbbbb| 亚洲中国精品黄色av一区| 日韩精品欧美国产精品亚| 国产精品欧美一区乱破| 粗大的内捧猛烈进出少妇| 精品人妻毛片久久久久久| 日本一区二区免费黄色视频| 成人国产精品免费观看| 日本免码va在线看免费| 亚洲欧美日韩综合在线免费观看 | 成人午夜视频在线观看| 无码av中文一区二区三区| 蜜桃久久一区二区三区| 国产精品久久久久久粉嫩影视| 欧美日本一区二区三区免费| 国产精品三级三级三级| 一本大道久久a久久精品综合1| 亚洲欧美中文字幕变态另类| 天堂av资源网在线观看| 99精品视频一区在线观看| 人妻免费久久久久久久了| 国产公开久久人人97超碰| 操老女人一区二区三区视频tv| 能免费在线观看av的网站| 国产+精品+在线观看| 妇女嫩BBB揉BBBBBB搡| luna精品videossex| 神马影院手机在线观看| 337p日本欧洲亚洲大胆| 久久无码人妻一区二区三区午夜| www九九热com| 国产在线一区二区香蕉| 亚洲精品国男人在线视频| 啊啊啊一区二区在线观看| 久久人人97超碰国产精品| 欧美+国产在线观看| 小小小蜜桃6免费观看电视剧高清| 欧洲av+成人+久久| 国内精品久久久久影院+日本| 国产精成a品人v在线播放| 日韩三级一区二区三区| 青青草国产免费国产是公开| 国产99久久久久久免费看农村| 国产又爽又黄无遮挡免费视频| 久久亚洲精品成人无码网站| 精品美女免费视频wwxx| 久热香蕉最新精品视频在线观看| 欧美99热这里都是精品| 9.1人成人免费视频网站| 教官用舌头猛烈进入丰满少妇视频| 色噜噜狠狠色综合日日| 水菜丽+sm+磁力链接| 色噜噜狠狠色综合日日| 国产真实乱偷精品视频| 国产又黄又猛又粗又爽的久久久 | 亚洲精品久久久久久久久毛片直播| 国语对白刺激在线视频国产网红| 香蕉久久av一区二区三区app| 欧美日韩免费高清| 欧美一级免费观看| 一本大道久久a久久综合婷婷| 日日碰狠狠添天天爽五月婷| 亚洲欧美韩国综合色| 美女黄网站免费福利视频| 国产在线看老王影院入口2021| 亚洲男同视频网站| 色狠狠久久aa北条麻妃| 午夜精品一二三区| 中文字幕一区二区三区久久网站| 亚洲午夜免费福利av|