精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

一本大道东京热无码aⅴ| 无码人妻丰满熟妇区网站| 精品国产不卡在线观看免费| 成人做爰A片免费看网站百丽| 中文字幕无线乱码人妻| 国产不卡av免费在线观看| 亚洲一区二区三区久久久| 日本成人午夜视频| 美女黄色视频网站入口在线看 | 免费观看已满十八岁电视剧动漫星辰| 欧美激情精品久久| 青青国内精品视频免费观看| 欧洲高清转码区一二区| 国产+日本+另类| 中文+字幕+国产| 神马视频在线观看亚洲福利| 久久99这里只有精品| 久久五十路丰满熟女中出| 69国产精品久久久久久人妻| 国产丰满麻豆vⅰde0sex| 色综合色天天久久婷婷基地| 毛片毛片毛片毛片| 男女日批在线观看| 成人在线精品视频| 欧美一卡二卡三卡四卡视频区| 不卡一区二区三区四区| 啪啪视频最新地址发布页| 国产在线精品一区二区夜色| 91丨porny丨国产麻豆| TokyoKoT大交乱| 久久99精品国产麻豆| 国产青草视频在线观看免费影院| 中文人妻av久久人妻18| 精品国产又粗又猛又爽又黄| 日本欧美成人精品在线观看| 亚洲三区在线观看无套内射| 欧美黑人喷潮水xxxx| 极品气质女神呻吟娇喘91| 亚洲日韩精品区二区av| 免费看又色又爽又黄的国产| 久久99国产精品黄色片| 中文字幕丰满孑伦无码专区| 国产做a爰片久久毛片a我的朋友| 欧美成人精品一区二区三区在线观看 | 天堂中文在线观看| 好男人社区www在线视频| 免费av不卡在线观看| 精品国产乱子伦一区二区三区最新章节 | 少妇高潮惨叫喷水正在播放| 久久精品无码中文字幕| 国产精品一区二区麻豆| 韩国主播av福利一区二区| 日韩成人中文字幕| 亚洲欧洲AV无码区玉蒲区| 美女一区二区三区视频在线| 国产新婚夫妇叫床声不断| 欧美亚洲国产精品第一页| 91久久精品视频| 麻豆国产成人av高清在线观看| 国产区日韩区欧美区| 中文字幕国产专区欧美激情| 欧美变态另类刺激| 国产浮力第一页草草影院| 国产日韩欧美手机在线视频| 亚洲色大成网站www尤物| 一区二区激情av| 欧美99热这里都是精品 | 亚洲自偷自拍另类第1页| 国产最新精品自产在线观看| yjizz视频网| 无套内谢波多野结衣| 欧美+日韩+国产在线| 台湾+无码+先锋影音| 中国美女毛片视频免费看| 18+小视频+日韩毛片| 国产一区二区不卡在线看| 色婷婷五月综合亚洲小说| 国产+免费+日韩| 国产极品美女到高潮| 欧美日韩国产欧美日美国产精品| 人妻精品一区二区在线视频| 亚洲禁18久人片| av免费在线观看不卡| 真人做爰片免费观看播放第09集| xxx日本一区二区免费| 欧美国产日韩综合| 亚洲AV综合A色AV中文| 日韩欧美中文字幕激情视频| 中文字幕日本在线| 亚洲欧美激情四射在线日| 夜夜爽夜夜叫夜夜高潮漏水| 可以免费看日本黄色的网站| 美女一区二区三区视频在线| 亚洲精品一区二区在线观看丁字裤| 国产+麻豆+美女| 日韩欧美国产一区二区| 国产精品亚洲综合| 无码人妻精品一区二区三区9厂| 日韩欧美中文字幕在线视频四区| 最新日韩精品中文字幕| 精品亚洲精品第—区| 粗壮挺进人妻水蜜桃成熟漫画 | 亚洲狠狠婷婷综合久久久久图片| 懂色av色吟av夜夜嗨| 国产乱码久久久久久| 亚洲人成人7777在线播放| 无遮挡做爰激吻国产999| 精品久久久久久无码中文字幕漫画| 成人在线精品视频| 人妻中文字幕一区三区5| 奇米第四色777| 日本高清av+迅雷| 影音先锋+拘束+高潮| 爆乳の豊満な肉体| 99久久国产自偷自偷免费一区| 国产精品一卡2卡三卡4卡 | 免费欧美久久国产| 色欲综合久久躁天天躁| 嫩草影院在线观看高清完整版| 欧美日韩免费不卡激情在线视频 | 日本天天日天天干| 久久伊人精品视频| 99热精品国产三级在线观看| 京熱大亂交无碼大亂交| 久久精品国产精品亚洲艾草网 | 国产精品网红尤物福利在线观看| 中文字幕在线观看网址| 日本大香蕉中文在线视频| 亚州精品国产精品乱码不99按摩| 免费观看成年人网站| 超薄肉色丝袜一二三四| 精品人妻系列乱码一区二区三区| 在线观看人成视频网站不卡| 久久精品国产亚洲av成人婷婷| 亚洲男同视频网站| 91av在线视频观看| 在线观看片免费人成视频播放| 国产欧美一区二区三区免| 嫩草影院在线观看高清完整版| 懂色av色吟av夜夜嗨| 国产69精品久久久久久尤物| 天天看片+天天av+免费观看| 无码精品人妻一区二区三区av| 在线看片免费人成视频久网| 亚洲午夜久久久久久久国产| 日韩少妇激情一区二区| 日韩三级一区二区三区| 69做爰高潮全过程免| 久热99精品视频免费观看免费| 免费无码又爽又刺激软件下载直播| 成品片a免费入口麻豆| 国产99久久久久久免费看农村| av狠狠色丁香婷婷综合久久| 伊人久久综合给合综合久久| 国产黄色片在线播放| 182tv午夜福利| 怡春院国产精品视频| 成人+国产+免费| 奶头好大狂揉60分钟视频| 无码人妻一区二区三区免费看| 国产+精品+日韩| 免费网站观看www在线观看| 【快穿】淫交任务(高h| 色噜噜www亚洲男人天堂| 欧美日韩国产一区精品一区| 欧美黑人喷潮水xxxx| 中文字幕免费观看视频人妻一区| 欧美日韩福利视频一区二区| 777777国产7777777| 国产精品国精产品一二三区| 国产午夜福利在线观看红一片 | 狠狠躁天天躁无码中文字幕图| 宅男66lu国产在线观看| 好爽…又高潮了毛片| 亚洲婷婷五月综合狠狠app| 一区二区国产日韩欧美综合 | 97人妻成年人视频公开| 国产深夜福利97视频在线观看| 99热99这里只有精品| 精品久久亚洲中文字幕| 国产精品99久久最新视频| 国产三级片在线视频观看| 在线看片免费人成视频国产片| 操老女人一区二区三区视频tv| 无码人妻一区二区三区免费n鬼逝 av岬奈奈美一区二区三区 | 精品视频无码一区二区三区| 一级黄色大片免费观看| 亚洲+综合久久+成人av| 日韩免费在线播放一级黄片| 成全影院在线观看免费高清完整版电视剧 | 国产精品永久久久久久久| 中文久久乱码一区二区| 免费成人进口网站| 国产精品久久99精品毛片三a| 欧美一区二区精品在线观看视频| www.超碰在线观看| 深夜福利小视频在线观看| 国产精品伦一区二区三级视频永妇| 日韩乱码在线观看免费视频网站| jizz亚洲女人| 在线观看成人小视频| 欧美视频在线观看一区| 内射少妇一区27p| 乱子伦息子一区二区| 日韩人妻无码免费视频一区二区三区| 亚洲精品1卡2卡3卡| 亚洲成a人一区二区三区| 玩弄少妇高潮a片水蜜桃网站| 无码免费又黄又爽视频| 国产Av午夜精品一区二区三区| 日韩欧美国产一区二区在线播放| 国产又黄又大视频| 日韩+成人+熟女| 91精品国产综合久久久久| 日韩本毛片高清免费视频| 国产成人精品自产拍在线观看| 国产成av人片久青草影院| 亚洲男女羞羞无遮挡久久丫| 7777淫语有声小说| 天堂在线视频免费| 精品无人乱码一区二区三区的特点| 亚洲一区二区三区激烈免费视频| 国产又粗又猛又爽又黄视频| 羞羞影院午夜男女爽爽免费| 欲求不满的岳中文字幕| 久久久一区二区三区国产精品| 0855午夜福利| 2019日韩中文字幕| 午夜福利国产精品久久超碰最新 | 少妇精品无码一区二区免费视频| 国产又爽又黄又粗又硬视频 | 国内精品久久久久久网站| 久久网美女黄色视频网站 | 18+欧美+日韩| 国产午夜福利100集发布| 国产+精品+喷水| 日韩一区二区三区在线网页| 日韩+欧美+导航| 日本熟妇黑毛浓密白浆| 天堂网www天堂资源网| 中文字幕日韩精品久久| 日韩精品网站在线观看| 大地资源二中文第二页在线| 国产成人三级在线观看| av人人爽日日碰| 1024国产视频| 九九影院在线观看电视剧| 亚洲亚洲人成网站网址| 久久这里只精品国产免费99| 91精品国产综合久久久蜜臀九色| 国产又黄又粗又硬的视频 | 日韩中文字幕免费| 日韩欧美高清字幕在线观看| 欧美日本91精品久久久久| 超薄丝袜足j好爽在线观看| 亚洲熟女av一区二区三区软件| 国产精品日韩欧美亚洲另类| y111111111免费观看电视| 四虎永久在线精品免费网站| 日韩欧美成人网站| 亚洲综合精品一区二区三区| 久久无码一级免费| 免费黄色小视频在线观看| 国产二区交换配乱婬| 一个人午夜观看在线中文字幕 | 欧美群伦AAAAA片| 麻花传媒剧国产mv高清播放| 岛国片人妻三上悠亚| 最新国产精品高清在线观看| 人人躁日日躁狠狠躁av| 国产亚洲日韩在线人成| 青草久久人人97超碰| 日韩女优一区二区三区在线播放| 中文字幕一区二区三区久久人妻| 亚洲成av人影院| 亚洲Av无码一区二区三区天堂 | 国产日韩精品一区在线观看| 7878成人国产在线观看| 欧美做受三级级视频播放| 国产在线观看免费高清电视剧大全| 又粗又硬又黄的国产视频| 69pao强力打造免费高速| 婷婷嫩草国产精品一区二区三区| 狠狠色丁香婷婷亚洲综合| 国产+高潮+视频| 国产av一区最新精品| 亚洲精品自产拍在线观看动漫 | 亚洲精品综合在线观看| 四虎精品国产永久在线观看| 国产精品资源免费在线观看| 欧美成人午夜一卡二卡在线视频| 国色一卡2卡二卡4卡乱码 | 大地资源高清在线观看| 亚洲精品久久久久久久久毛片直播| 国产日韩精品一道在线观看| 仙踪林777777野大粗| 精品国产乱码久久久久久88av| 国产精品4huwww| 99久久久久久国产精品| 91精品国产一区| 欧美在线人视频在线观看| 精品国产亚洲av色噜噜| 午夜丰满极品美女A片| 日韩中文在线字幕| 丰满熟妇人妻av无码区| 年轻的嫂子+磁力链接| 国产女爽123视频.cno| 久久久国产一区二区三区四区小说| 国产精品96久久久| 亚洲欧美一区二区三区四区五区 | 81精品久久久久久久婷婷| 中文字幕+乱码+高清| 大伊香蕉精品视频在线| 亚洲欧洲AV无码区玉蒲区| 成年奭片免费观看视频天天看| 丰满大爆乳波霸奶| 精品国产自在在线午夜精品| 一区二区三区欧美在线观看| 日韩av不卡一区| 亚洲视频一卡二卡三卡四卡| 岛国片人妻三上悠亚| 色综合久久久久久| 国产乱人伦精品一区二区_国产91在线 | 婷婷激情五月av在线观看| 少妇一级娃片淫片象免费放| 亚洲国产精品不卡av在线| 国产又黄又猛又粗又爽的久久久| 偷偷要色偷偷中文无码| 国产ae86亚洲福利入口| 亚洲无线码在线一区观看| 东京热久久综合日韩精品| 免费观看又色又爽又黄的崩锅| 国产无遮挡裸体免费视频| 精品欧美一区二区三区免费观看| 五月狠狠亚洲小说专区| 一本色道88久久加勒比精品| 国产一区日韩二区欧美三区| 久久99热这里只有精品23| 97caoporn国产免费人人 | 欧美国产中文字幕在线视频| 免费中文字幕在线观看| 国产愉拍自拍中文在线| 18精品毛片久久久久| 国产+刺激+高潮| gogogo手机高清视频免费观看| 日韩精品在线视频观看| 日本精品巨爆乳无码大乳巨| 午夜福利精品kkk在线| 成人欧美一区二区三区在线| 精品国产av一区二区三区√| 丰满无码人妻热妇无码区| 国产精品久久久久久久久动漫| 国产+女女+喷水| 欧美乱子伦一区二区三区| 亚洲一区二区三区无码中文字幕| 97久久精品人人做人人爽| 美丽人妻被按摩中出中文字幕| 亚洲欧美不卡高清在线| 少妇一区二区三区在线视频| 国产精品v欧美精品v日韩精品v| 青草久久人人97超碰| 日本熟妇无码一区二区| 国产精品亚洲精品一区二区| 亚洲成人一区在线| 国产精品一区二区三区精品视频| 国产+免费+高潮| 久久亚洲国产男女日穴精选| 成av免费大片黄在线观看| www波多野结衣com| 国产黄片视频主播在线观看| 中文字幕无线乱码人妻| 久久www免费人成看片高清| 国产日韩在线欧美一区二区| 日本在线观看一区| 中文字幕无线码免费人妻| 97久久综合区小说区图片区 | 国产日韩欧美亚洲一区二区三区| 久久精品无码手机观看| 精品不卡一区中文字幕| 亚洲国产欧美日本视频| 国产成人福利美女观看视频| 日韩高清特级特黄毛片| 在线人成免费视频69国产| 免费无码又爽又刺激高潮视频看看老A| 91在线精品入口| 夜夜摸日日躁欧美视频| 中文字幕精品亚洲无线码vr| 欧美热在线视频精品999| 韩国巜干柴烈火〉床戏 | 中文字幕高清在线| 国产综合在线视频| 色欲AⅤ亚洲情无码AV蜜桃| 高清欧美精品xxxxx在线看| 国产VA免费精品高清在线| 国产一区二区三区精品综合| 免费大香伊蕉在人线国产| 全部露出来毛走秀福利视频| 日本极品少妇一区二区在线观看| 亚洲国产欧美另类| 777米奇色888狠狠俺去啦 | 日本欧美亚洲中文在线观看| 少妇高潮7777777丫乄| 久久91精品国产91久久小草| 欧美成人aaaaaaaa免费| 天堂视频在线免费观看| 欧美精品v欧洲高清视频在线观看| 又粗又黄又爽视频免费看| 国产一级特黄毛片| 亚洲欧美成人aⅴ在线| 国产又色又爽无遮挡免费动态图| 国产美女免费无遮挡网站| 国产精品一区免费在线看| 欧美专区日韩视频人妻| 在线观看一区二区国产欧美 | 精品一区二区三区三区| 亚洲精品国产精品色诱一区 | 免费乱理伦片奇优影院| 波多野结衣被躁50分钟| 欧美国产日韩在线一区二区三区| 无码人妻一区二区三区免费视频 | 黄片久久久久久久黄片久久 | 久久精品国产欧美日韩亚洲| 国产乱码一区二区三区观看 | 免费在线观看av网站| 欧美另类与牲交zozozo| 亚洲国产天堂视频在线播放| 狠狠色老熟妇老熟女| 日日摸夜夜添夜夜添无码免费视频| luna精品videossex| 99精品+麻豆+国产| 国产精品原创巨作av女教师| 日韩欧美中文字幕在线三区| 亚洲国产成人在线视频| 国产在线精品拍揄自揄免费| 亚洲色一色噜一噜噜噜| 国产免费a∨片在线观看不卡| 双乳奶水饱满少妇视频| 一级国产特黄bbbbb| 寡妇被老头舔到高潮的视频| 少妇人妻精品无码专区视频| 国产乱色国产精品免费视频| 全程露脸3p东北老女人| 一区二区三区在线播放| 国产免费av一区二区在线观看| 久久尤物免费一区二区三区| 伊人久久成综合久久影院| 日本卡2卡3卡4卡5卡精品视频| 亚洲精品久久久久中文字幕| 国产+另类+乱片| 1000部拍拍视频18勿入| 日韩高清亚洲日韩精品一区二区 | 精品久久久久中文字幕app| 91在线91拍拍在线91| 偷偷要色偷偷中文无码| 成人+欧美精品+一区二区三区| 久久99精品无码一区二区| 日本一卡二卡视频| 色狠狠一区二区三区熟女p| 精品在线观看一区| 亚洲+国产+视频在线| 亚洲男人天堂一区在线观看| 超薄丝袜足j好爽在线观看| 成人18+免费视频| 妺妺窝WWW仙踪林粗大野| 四虎国产在线观看| 一本色道av久久精品+网站| 亚洲天天做日日做| 久久久久国产精品视频| 精品久久久久久久无码人妻热 | 80s+毛片+免费观看| 午夜福利精品kkk在线| 在线aⅴ亚洲中文字幕| 国产手机av片在线观看| 国产精品一品二区三区四区18| 欧美3p在线观看| 可以在线看的av网站| 中文在线观看免费高清电视剧| 九九热在线精品视频| 最近中文字幕免费观看视频| 真实新婚偷拍Chinese| 人人超碰91尤物精品国产| 成人做爰A片免费看黄冈白狐影院| 国产欧美日韩亚洲一区二区| 欧美+国产+制服| 国产熟女高潮精品视频区| 成人av免费观看| 亚洲日韩国产欧美一区二区三区| 日韩三区在线观看| 国产伦子伦一级A片免费看小说| 欧美xxxx做受老人国产的| 精品国产av一区二区三区四区 | 极品白嫩少妇无套内谢| 天堂网www在线资源网| 国产一区二区自拍视频| 日韩精品视频免费在线观看 | 网站+激情+国产| 精品人伦1区2区3区蜜桃| 国产精品爽爽久久久久久豆腐| 欧美日韩国产免费观看一区二区| 欧美、另类亚洲日本一区二区| 国产成人av三级在线观看| 亚洲AV成人精品午夜一区二区| 免费播放高清毛片A片色情天雨水多| 日韩精品一区二区在线观看网址| 九一麻花传剧mv免费观看影视大全| 国产精品18久久久久久麻辣| 成人做爰A片AAA毛真人| 无码专区视频精品老司机| 无码av无码一区二区桃花岛| 国产69精品久久久久男男系列| 久久久久久久岛国免费网站| 西西人体大胆ww4444图片| 痴汉电车人妻被内谢下面很多水| 亚洲日韩精品一区二区三区 | 亚洲精品入口一区二区乱| 国产一区二区三区免费在线| 国产精品国产三级国产不产一地| エッチなH0930人妻斩| 亚洲一区二区三区日韩在线视频| 天堂在线视频免费| 国产一区二区三区免费高清在线播放| 国产欧美精品一区| 78色淫网站女女免费| 93国产精品久久久久久| 变态另类天上人间| 少妇爆乳无码专区网站| 四lllBBBB槡BBBB视频| 国产精品一区波多野结衣| 亚洲国产视频精品一区二区| 日韩高清在线亚洲专区小说| 欧美国产日韩在线一区二区三区| 欧美超碰在线观看| 亚洲+欧美+韩国精品| 午夜福利影院私人爽| 天海翼精品久久久久中文字幕 | 乳欲人妻1~5集动漫无删减| 欧美成人看片一区二三区图文| 又黄又爽全无遮挡的免费视频| 亚洲精品精华液一区二区| 亚洲视频一区亚洲视频一区| 国产+资源+视频播放器| 夜夜添狠狠添高潮出水| 亚洲国产成人手机在线观看| 91在线免费视频观看| 久久久国产免费美女视频| 日本一卡二卡视频| 国产午夜福利片在线观看 | 欧美日韩人成视频在线播放| 《美丽的小蜜桃2》女主是谁| www日韩avcom| 玩弄少妇高潮喷水在线观看| 最新黄色网址在线观看| 日韩人妻系列无码专区| 国产无套粉嫩白浆在线| 成人综合另类国产色视频| 美女视频黄的全免费视频网站 | 亚洲成在人网站av天堂| 欧美一级特黄特色大片免费观看| 国产熟女毛多水大高潮| 六月婷婷在线观看| 在线看片免费人成视频国产片| 大桥未久+高清无码| 91精品日产一二三区乱码| 欧美一级a视频免费在线观看| 青青青国内视频在线观看软件| 欧美成人精品三级在线观看播放| 亚洲国产欧美另类| 又色又爽又黄的视频女女| 国产91精品久久久久91黄色| 精品国产91久久久| 96精品伊人久久久大香线蕉 | 天堂网www天堂资源网| 天天揉久久久久亚洲精品| www.delisava.com| 日韩+成人+熟女| 亚洲人成未满十八禁网站 | 亚洲日韩精品区二区av| 国产99久9在线视频传媒| 天堂8а√中文在线官网| 欧美一级视频在线观看三级 | 亚洲伊人精品伊人7777| 成在线人免费视频播放| 久久久久久久人妻无码中文字幕爆| 影音先锋熟女少妇av资源| 亚洲+国产+日本视频| 少妇人人凹凸XX凹凸爽凹凸| 国产精品高潮久久久久久| 日本一区午夜艳熟免费| av天堂东京热无码专区| 在线观看日韩欧美综合黄片| 国产+精品+在线观看| 欧美黄色激情视频| 色综合图区av网站| 偷青青国产精品青青在线观看| 明星乱淫免费视频欧美| 国产国产午夜精华| 一区二区在线免费| 欧美不卡视频一区发布| 国产欧美日韩综合在线成| 99国产超薄肉色丝袜交足的后果| 国产美女在线观看| 亚洲日韩欧洲无码av夜夜摸| 日本haaeX孰妇乱子高潮| 久久久www成人免费看片| 伊人久久大香线蕉av色| 欧洲日韩亚洲无线在码| 免费观看又色又爽又黄的崩锅 | 精品国产av色欲果冻传媒| 成人+亚洲+综合| 少妇久久久久久久| 色黄网站aaaaaa级毛片| 中文字幕+中文字幕在线| 国产综合精品在线| 99re6在线观看| 9久久国产精品免费视频| 欧美成人精品一区二区三区在线观看| 亚州日本乱码一区二区三区| 丰满人妻被黑人中出849| 国产精品国产三级国产不产一地| 爽爽爽a男女免费观看一区二区| 国产又粗又黄的视频免费 | 亚洲高清国产av一二三区 | 亚洲精品乱码久久久久久日本| 黑人精品XXX一区一二区| 床震高潮在线观看无遮挡| 精品熟人一区二区三区四区| 欧美人伦禁忌dvd放荡欲情| 国产精品久久久免费| 亚洲婷婷天堂在线综合| 国产在线一卡2卡三卡4卡免费| 人妻丰满熟妇av无码区App | 国产手机av片在线观看| 国产毛片女人高潮叫声| 国产人成视频免费在线观看| 国产精品夜夜爽7777777| 欧美xxxx做受老人国产的| 一区二区三区精品视频| 女人同房高潮后松手能恢复吗| 香蕉视频+在线观看+色吧| 一区二区三天美小说| 日韩欧美国产一区二区三区久久| 奶大丰满一伦一视一视| 仙踪林777777野大粗| 日本顶级metart裸体全部| 国产免费完整高清电视剧在线看| 少妇久久久久久被弄高潮| 狠狠色噜噜狠狠狠狠97俺也去| 色婷婷精品久久二区二区蜜臂av| 亚洲+欧洲+久久av| 国产三级视频播放线观看| 日韩精品在线视频观看| 少妇人妻系列无码专区视频| 激情视频免费在线观看| 久久精品亚洲国产av麻豆| 日韩在线观看只有精品视频| 日韩精品a片一区二区三区妖精| 波多野结衣绝顶高潮喷水| 中文有码视频在线免费观看| av超碰日韩成人在线观看| 冢本六十路の高齢熟女| 色一情一区二区三区四区+国产| 99国产欧美另类久久片 | 巨爆乳肉感一区二区三区| 一个人看的视频www中文字幕| 顶级欧美熟妇xx| 国产目拍亚洲精品一区二区| 日韩欧美一区二区在线视频| 干淫语对白骚妇视频| 国产欧美另类久久久精品99| 日本道免费精品一区二区| 小12萝裸体自慰出白浆| 粉嫩美鮑国产一区二区| 国产直播一区视频免费观看| 国产成人精品日本亚洲麻豆| 欧美高清在线免费观看视频| 国产欧美日韩精品一区二区蜜臀 | 日本乱妇乱子视频网站| 337p粉嫩大胆色噜噜噜噜| 无码专区人妻系列日韩精品少妇| 又粗又长又硬义又黄又爽| 中文字幕人妻色偷偷久久| 最新黄色网址在线观看| 天天av影院免费看| 亚洲日本乱码一区二区在线二产线| 天堂网www在线资源网| 国内精品伊人久久久久777| 中文字幕无线乱码人妻| 中文字幕av九五月天| 成人免费动漫无码大片a毛片| 内射少妇一区27p| 国产三级在线三级久操欧美| 高清国产日韩黄色录像| 大香蕉网国产在线观看av| 美女诱惑一区二区| 两人午夜免费观看www| 日本熟妇japanese丰满| 久久久久久人妻精品一区二区三区| 欧美+日本+国产在线观看| 久久精品国产久精国产果冻传媒 | 国产三级精品三级在线专区1| 欧美亚洲日韩在线在线影院| 小视频国产在线观看网站| 亚洲热久久国产经典视频| 亚洲欧美日韩中文无线码| 国产色99精品9i| 伊人色综合久久天天五月婷 | 公共场合高潮(h)公交车| 国产模特嫩模私拍视频在线| 国产日韩欧美不卡在线二区| 欧美成人精品一级乱黄| 日本欧美一区二区三区乱码| 色综合伊人丁香五月桃花婷婷 | 乱子伦国产对白在线播放| 久久成人免费网站| 影音先锋+成人资源| 99精品国产99欠久久久久| 高清无码不用播放器av| 免费人成激情视频在线观看冫 | 欧洲熟妇色xxxx欧美老妇| 亚洲高清成人aⅴ片| 91精品福利视频| 在线观看av网站永久免费观看| 在线观看视频国产免费网站观看| 精品久久久久久777米琪桃花| 五十路豊満の交尾在线| 大伊香蕉精品视频在线| 韩国+欧美+国产| 欧美三级在线观看视频| 国产+成人+欧美| 美女黄色免费网站| 日韩一区二区三区视频| 亚洲综合Av一区二区三区| 国产精品美女久久久久AV福利| 国产欧美日韩精品丝袜高跟鞋| 免费观看在线高清电视剧| 国产精品久久久久久久久久久久久久久久| 国产免费不卡av在线播放| 亚洲l码和欧洲m码的区别| 久久久www成人免费毛片女| 国产精品日韩欧美一区二区| 【快穿】淫交任务(高h| 日本无码一区二区三区| 奶大丰满一伦一视一视| 日本一二三不卡精品视频免费| 国产日韩欧美亚洲综合v精品| 久久+蜜臀+综合| 欧美精品v欧洲高清视频在线观看| 九九九精品成人免费视频小说| 欧美专区+日韩视频+人妻| 中文字幕亚洲综合久久青草| 亚洲+综合+欧美| 麻豆激情久久av| 国产免费观看高清电视剧| 国产一国产二国产三| 日本人妻丰满熟妇www色| 黑人3p波多野结衣之皇| 天天射天天干天天色| 日韩.国产.欧美在线字幕| 成人做爰视频www| 午夜一区二区亚洲福利| 日韩毛片+18+成人网| 精品人妻中文字幕在线| jav+中文字幕| 天堂va蜜桃一区二区三区| 懂色AV粉嫩AV蜜乳AV| 波多野结衣《温泉人妻》| 国产素人激情在线观看网址| 国产精品美女久久久av软件| 亚洲亚洲人成网站77777| 国产无遮挡又黄又大又不要vip| 51吃瓜网每日大赛今日大赛| 国产精品高清一区二区不卡片| 深夜福利1区2区3区欧美| 亚洲暴爽av人人爽日日碰| 国产高清吃奶成免费视频网站| 先锋影音+中文字幕| 三级慰安女妇威狂放播| 99国内视频免费在线观看| 国产日韩欧美亚洲综合v精品| 99久久精品无码一区二区免费 | 亚洲精品久久久久久久观看| 授乳喂奶av中文在线| 美女被咬小头头的视频| 久草在线免费资源| 丰满日韩放荡少妇无码视频| 中文字幕亚洲欧美中文字幕 | 国产91勾搭技师精品| 亚洲精品乱码久久久久久花季 | 国产+在线观看+免费| 国产真人真事毛片视频| 一区二区三区国产网站麻豆| 久久99精品久久久久久园产越南| 欧美污视频免费在线观看| 18+av在线免费| 亚洲精品精华液一区二区| 在线观看日韩欧美综合黄片| 人妻丰满熟妇av滝川恵理| 亚洲视频在线免费观看一区二区| 国产精品夜间视频香蕉酒店| 亚洲欧美在线一区中文字幕| 人妻在线日韩免费视频| 欧美自拍另类欧美综合图片区| 久久天天躁夜夜躁狠狠85| 亚洲AV高清无码| 武则天被狂躁C到高潮| 国产精品69毛片高清亚洲| 蜜桃久久一区二区三区| 亚洲国产剧情在线精品视| 久操视频免费在线| 美女黄色免费网站| 香蕉在线精品视频在线观看| 出差+无码+thunder| 一边吃奶一边舔p好爽视频观看| 国产欧美久久一区二区| 99久久国产综合精品五月天喷水| 中文字幕免费播放| 国产嫩苞又嫩又紧AV在线| 亚欧美黄片免费高清不卡| 影音先锋黄色资源| 欧美激情国产一区二区13| 亚洲国产精品久久久久久| 亚洲中文十区字幕在线播放| 国产亚洲一区二区三区综合片| 国产精品亚洲欧美中文字幕| 亚洲视频一卡二卡三卡四卡| 91色老头与人妻中文字幕视频| 亚洲桃色在线播放国产精品| 成人免费在线观看h视频| 久久精品国产亚洲av成人久久| 日韩免费码中文在线观看| 成人做爰黄AA片免费播放贝微微| 久久精品道一区二区三区| 久久精品这里热有精品| 中文字幕在线观看国产精品 | 粉嫩美鮑国产一区二区| 亚洲永久精品国产xxxx| 正在播放+日韩+无码| 熟妇精品一区二区三区四区| 最新在线免费观看av的网站| 成年人免费观看国产精品视频| yy6080理aa级伦大片一级| 午夜成人精品福利网站在线观看| 日韩成人av在线播放| 视频区另类中文字幕欧美日韩| 成人一区二区三区国产精品| 国产精品青草综合久久久久99| 亚洲欧美视频在线观看| 羞羞影院午夜男女爽爽免费| 国产人妻精品久久久久野外| 精品久久久久久777米琪桃花| 国产日韩欧美一区| 国产精品久久久免费| 色愁久久久人愁久人生无悔意思相近| 亚洲中国精品黄色av一区| 一区三区在线专区在线| 裸体+国产+免费| 日韩美女搞黄视频一区二区| 91精品福利在线观看| 日韩国产成人精品视频| 久久精品国产99精品国产2021| 国精产品一区二区三区x88| 野外强伦姧女教师高清在线| 亚洲+欧洲+国产av| 国产美女午夜福利视频| www成人在线观看| www91免费视频| 欧美又粗又大又硬久久久| 粉嫩美鮑国产一区二区| 亲密+磁力链接+下载| 国产精品日产欧美一区二区三区| 亚洲熟妇av一区二区三区痴汉| 国产日本欧美一区二区在线观看 | 中文字幕日韩一区二区不卡| 中文字幕+亚洲专区| 在线观看+免费+国产| 欧美一区二区三区红桃小说| 国产又粗又猛又爽又黄的视频p站| 男人下部进女人下部视频| 99re视频在线| 日本最新免费二区| 日本高清免费毛片久久| 欧美人伦禁忌dvd放荡欲情| 亚洲a∨无码精品色午夜| 亚洲国产精品综合久久网各| 永久黄网站免费在线观看| 亚洲va久久噜噜噜久久| 免费国产视频一区二区三区| 久久精品国产精品青草app| 色婷婷一区二区三区av免费看| 97成人做爰A片无遮挡直播| 日本熟妇japanese丰满| 国产+精品+aa| 老司机久久精品视频| 51视频国产精品一区二区| 丰满妇女免费看69dVA片 | 青草影院内射中出高潮| 在线一区二区三区| 青青草免费在线视频| 亚洲精品国产精品色诱一区| 美女成人亚欧色区视频网| 丁香五月激情综合亚洲| 天天免費国产在线观看| aaa欧美色吧激情视频| 最新av网址在线观看| 高清无码成人视频| 人妻丰满熟妇av无码区免| 九九热视频在线播放| 小夫妻高潮偷拍合集| 91tv国产成人福利| 精品欧美一区二区三区免费观看| 麻豆精品人妻一区二区三区蜜桃| 日本老熟欧美老熟妇| 乖灬舒服灬别拔出来灬男男| 91久久精品国产| 在线天堂中文最新版资源| 搡老熟女老女人一区二区| 欧美日韩在线四区| 52avavjizz亚洲精品| 高清国产午夜精品久久久久久| 国产+日韩+欧美精品| 欧美+超清+无码| 欧美日本二区三区四区人气| 91蜜桃传媒精品久久久一区二区| 久久婷婷综合99啪69影院| 播放日韩美女免费毛片视频| 中文字幕欧美精品一区二区三区| 日日碰狠狠添天天爽五月婷| 中文字幕久久波多野结衣av不卡| 久久久亚洲精品成人| 天堂av2020| 人妻丰满熟妇av无码区免| 亚洲一区二区免费在线观看 | 一区二区免费视频中文乱码| 热99re久久国超精品首页| 欧美日韩中文麻豆| 小小小蜜桃6免费观看电视剧高清 人人爽人人奭人人片AV | 国产精品美女久久久久久av爽 | 亚洲国产精品国自产拍色欲av| 久久久久久经典精品欧美激情| 五月婷婷激情小说| 国产美女永久免费无遮挡| 黄色一级片免费播放| 又爽又色禁片1000视频免费看| 伊人干网综合亚洲| 天堂岛视频在线观看欧美日韩| 国产传媒在线播放| 又爽又色禁片1000视频免费看| 亚洲情侣偷拍激情在线播放| 精品国产乱码久久久久久88av| 无码人妻一区二区三区筱田优| 91精品国产高清一区二区三区| 无码人妻精品一区二区三| 婷婷激情偷拍在线| 国产一级做a爰片久久毛片男| 欧美日韩无线码视频在线播放| 国产欧美在线观看不卡| 日本老熟妇乱子伦精品| 中文在线字幕观看电视剧hd| 欧美色欧美亚洲另类七区| 最新69国产成人精品视频| 色婷婷一区二区三区av免费看| 色哟哟免费视频播放网站| 青青青免费在线视频亚洲| 中文字幕一区二区三区5566| 99久久精品无免国产免费75| 国产成人+综合亚洲+天堂 | 日本三级欧美三级人妇视频黑白配| 国产+人人+欧美视频| 久久伊人色av天堂九九| 精品123区免费视频国产成人 | 欧美黑人一区二区| 伦视频中文字幕亚洲天堂网| 中文字幕视频在线欧美一区| 亚洲精品a片99久久久久| 影音先锋+中文+人妻| 久久久欧美国产精品人妻| 黄色一级片免费播放 | 人妻中文字系列无码专区| 免费无码毛片一区二三区| 久久久久久99国产精品| 中国熟妇XXXX18| 日韩av手机在线| 久久99精品视频免费观看| 国语干离异富婆的骚B| 2020天天谢天天吃天天麻豆v| 在线观看日本高清=区| av天堂午夜精品一区二区三区 | 精品乱码国产一区二区三区| 女人17片毛片90分钟| 色欲蜜桃av无码中文字幕| 黑人大鷄巴精品A片| www国产亚洲精品久久麻豆| 91亚洲欧美中文精品按摩| 综合成人欧美网日韩青椒网| 国产三级视频播放线观看| 热久久国产欧美一区二区精品| 亚洲禁18久人片| 欧美成人看片一区二区尤物| 东方aⅴ免费观看久久av | 国产乱人伦偷精品视频免下载 | 国产成人av+在线| 嫩草嫩草嫩草久久水拉丝了| 欧美精品三级黄片| 亚洲国产高清aⅴ视频| 亚洲日本一区不卡在线观看| 免费a级毛片18以上观看精品| 久久精品亚洲毛片美女极品视频 | 综合激情丁香久久狠狠| 国产欧美日韩亚洲一区二区| 国产精品剧情在线中文字幕 | 日韩中文字幕在线观看视频| 亚洲成a人v欧美综合天堂麻豆| 国产精品一区二区av影视| 成人av网站在线观看免费| 毛片毛片毛片毛片| 国产精品高潮久久久久久| 欧美一级a视频免费在线观看 | 青草av.久久免费一区| 国产欧美va天堂在线观看视频下载 | 无码人妻精品中文字幕不卡| 久久婷婷五月综合色国产免费观看 | 激情综合丁香五月| 2021最新国产精品网站| 国内精品久久久久久久影视麻豆| 91丝袜呻吟高潮美腿白嫩综艺| 老太太老b乱子伦| 免费+高潮+白丝| 18+av在线观看| jav+中文字幕| 欧美+在线+亚洲| 中文在线天堂а√在线| 亚洲精品国产精品色诱一区| 国产精品久久久久久不卡盗摄| 日韩精品视频在线观看一区二区| 日本无卡码高清免费v| 视频二区制服丝袜人妻欧美| 迅雷种子+日韩+无码| 欧美亚洲高清一区二区三区不卡| 亚洲+欧洲+国产中文字幕| 欧美精品久久久久久久久久久| 久久精品国产99国产| 国产精品成熟老妇女| 国产+日本+在线观看| 久久天天躁狠狠躁夜夜av不卡| 全程露脸3p东北老女人| 9久久国产精品免费视频| 精品+国产+传媒| 色一乱一伦一图一区二区精品| 国产成人欧美一区二区三区在线 | 日韩精品亚洲aⅴ在线影院| 四虎国产精品永久免费网址| 探花风韵犹存少妇88AV| 美女啊啊啊在线观看国产| 美女视频一区二区| 久久视频免费在线观看| 成人又黄又爽又色的网站| www国产精品视频看看| 99久久精品久久久久久动态片| 天堂www天堂在线资源网| 亚洲风情亚aⅴ在线发布| 999在线观看精品免费不卡网站| 国产欧美日韩一区二区刘玥 | 成人三级视频在线观看一区二区| www.1314久色.com| 欧美国产又粗又长又爽视频| 中文字幕高清一区| 久久精品国产一区二区| 在线天堂中文最新版资源| 婷婷五月深深久久精品| 久久天天躁夜夜躁狠狠躁综合| 国产女主播精品大秀系列| 中文字幕精品久久久乱码乱码| 老熟女北岛玲Ⅴ8AV| 熟妇~x88AV翔田千里| 日韩中文字幕在线观看视频| 青青青青久久国产片免费精品 | 天堂一区二区在线免费观看| 国产激情无套内精对白视频| 高清无码不用播放器av| 东北少妇BBBB搡BBB搡| 国产+传媒+国产av| 久久精品国产精品亚洲毛片| 亚洲日本制服丝袜诱惑在线 | 精品国产自在精品国产浪潮 | 18+国产在线拍揄自揄视精品| 97国语精品自产拍在线观看| 窝窝影院在线播放免费观看电视剧 | 91精品国产色综合久久不卡98 | 国产偷久久一级精品av小说| 91精品久久久久久久久青青| 国产在线看片免费观看| 97国产乱码精品一区二区三上| 五月激情婷婷综合| 天堂在线www天堂在线| 少妇厨房愉情理伦片bd在线观看| 国产视频又黄又粗又爽又猛| 最近更新中文字幕2019视频| 99国产拍偷久400部热久久| 乌克兰女人大白屁股ass| 五十路豊満な肉体无码| 2019久久视频这里有精品15| 国色一卡2卡二卡4卡乱码| 国产精品一av一免费爽爽| 尤物97国产精品久久精品国产| 中国少妇大战黑人白浆| 日韩精品区一区二区三vr| 日本高清在线观看视频www| 免费专区丝袜调教视频| 色狠狠久久aa北条麻妃| 欧美群伦AAAAA片| 国产一级特黄aaa大片评分| 亚洲午夜久久久久久国产精品| 国产精品人妖ts系列视频| 美女视频黄免费国产91| yjizz视频网| 国产的av在线免费观看| 日韩高清av免费在线观看| 国产精品爽爽久久久久久豆腐| 婷婷色香五月综合激激情| 国产又粗又猛又爽视频上高潮| av综合网男人的天堂| 亚洲成综合人影院在院播放| 毛片黄色美女视频观看| 正在播放+日韩+无码| 国产精品久久久久久成人| 91精品福利在线观看| 国产精品一区二区三久久不卡 | 国产女人18毛片水真多成人如厕| 久久久久久久一区| 亚洲+中文字幕+人妻| 热99re久久国超精品首页| 91精品国产人妻国产毛片在线| 成人黄色免费观看| 亚洲免费av网站| 日产精品成人av片免费看有码| 在线v片免费观看视频| 52avavjizz亚洲精品| 国产第一页浮力影院草草| 粗大的内捧猛烈进出少妇| 五月天丁香婷婷亚洲综合一区| 8090成人午夜精品无码| 久久久国产丝袜美女| 国产精品国产三级国产有见不卡| 午夜国产av新品一区二区| 午夜精品久久久久久| 久久人妻这里有精品视频| 噜噜噜狠狠色综合| 亚洲区欧美日韩综合| 一区二区三区四区在线播放| 久久97久久97精品免视看秋霞| 国产乱人伦精品一区二区三区| 欧美日韩亚洲一区二区蜜桃臀| 欧美日本一区二区三区免费| 99精品国产96久久久久久| 99re这里只有精品在线观看| 久久精品国产自清天天线| 最好看的2018中文在线观看电视| 日韩av高清在线观看| 亚洲天堂岛av一区二区| 91免费国产高清视频| 黑人3p波多野结衣之皇| 2022亚洲无砖无线码| 综合久久婷婷综合久久| 亚洲熟妇AV一区二区三区| 被老师粗大jib捣出了白浆视频| 菠萝蜜影院免费播放电视剧软件| 国产在线观看99| 丁香花在线影院观看在线播放| 亚洲依依成人精品| 少妇大胆瓣开下部自慰| 狠狠色丁香婷婷综合久久图片| 欧美日韩中文字幕在线xxx| 中国女人黄色大片| 真人女处被破69x176cc| 人妻激情乱人伦视频| 国产一级淫片免费放大片| 日韩免费无码专区精品观看| 一卡二卡三卡视频| av男人天堂最新亚洲天堂| 国产+传媒+麻豆| 亚洲人成色99999在线观看| 日韩午夜激情视频| 精品一区二区三区四区| 国产又大又硬又粗的视频 | 丰满成熟熟妇乱又伦精品| 欧美亚洲熟妇一区二区三区 | 18成人福利网站在线观看| 国产亚洲精品久久久久久无| 欧美xxxx做受欧美69| 亚洲国产欧美一区二区三区一| 夜夜摸日日躁欧美视频| 欧美群交射精内射颜射潮喷| 96精品伊人久久久大香线蕉| 一级做a爰片久久毛片潮喷妓| 少妇激情av一区二区| 日本人六九视频69jzz免费| 国产区欧美区日韩区| 亚洲乱码国产乱码精品精小说 | 久久96热在精品国产三级| 麻豆绿帽人妻白洁AV| 免费男女羞羞的视频网站+192.168.0.1| 少妇人妻综合久久中文字幕| www.免费视频| 中文无码一区二区不卡AV| 西西444WWW无码视频软件| 亚洲婷婷五月激情综合APP| 国产精品视频一二区| 亚洲欧美精品中文一区二区三| 亚洲欧洲免费黄色视频| 高清无码视频18| 国产乱国产乱老熟| 久久99国产综合精品免费99| 成人免费一区二区三区视频软件 | 久久国产精品精品| 亚洲成人在线播放视频| 一区二区三区国产91久久久 | 日韩不卡高清视频| 久青青在线观看视频国产| 最近2018中文字幕在线视频| 18+日本一区二区| 亚洲国产精品第一区二区| 亚洲桃色在线播放国产精品| 欧美+群p+在线观看| 国产在线高清精品二区| 主播福利视频一区二区三区 | 日韩视频一区在线| 亚洲s码欧洲m吗国产精品| 天天躁日日躁狠狠躁免费麻豆| 又色又爽又黄又无遮挡的网站| 国产亚洲曝欧美精品手机在线| 国产精品精品视频一区二区三区| 日韩黄色一级网站| 亚洲日韩av一区二区三区四区| 17c.com喷水少妇| 成人免费观看cn| 2021国产精品午夜久久| 成人做爰100部片免费下载| 视频一区中文字幕| 色婷婷一区二区三区av免费看| 欧美视频网站www色| 手机免费看片AV永久看片国产日韩 | 91天天综合免费看国产| 亚洲а∨天堂久久精品2021| 久久精品国产精品国产精品黄| 国产精品久久久久久妇女6080 | 国产精品视频麻豆| 友田真希88AV在线播放| 精品国产v一区二区三广区 | 歪歪爽蜜臀av久久精品人人| 91丨九色丨蝌蚪丰满| 91免费国产高清视频| 国产网红主播一区二区视频| 18+成人在线观看| 亚洲国产日韩成人a在线欧美| 精品无人国产偷自产在线| 成人免费观看cn| 超碰中文字幕在线| 无码av永久免费专区麻豆| 国产目拍亚洲精品99久久精品| 精品自拍亚洲一区在线| 午夜免费福利视频| 亚洲中文无码av永久| 亚洲成a人片在线观看天堂| 国产高清精品久久久久久久 | 精品99一卡2卡三卡4卡| 亚洲福利国产网曝| 宇都宫+无码+迅雷| 羞羞视频在线观看免费| 六月丁香五月激情综合| 日韩欧美在线一区| 中文字幕丝袜人妻乱一区三区| 亚洲精品一区久久久久久| 亚洲精品v欧洲精品v日韩精品| 成人免费视频网址| 国产精品女同一区二区久久夜| 亚洲男女一区二区三区| 亚洲午夜国产一区99re久久| 国产+日韩+在线高清| 91社区在线播放| 丰满少妇大力进入av亚洲葵司| xxx+成人精品+视频在线| 欧美黄色激情视频| 最新在线免费观看av的网站| 91啦丨九色丨刺激中文| 久久精品青草社区| 国产欧美日韩精品一区二区三区| 青青草视频在线观看亚洲| 日韩一区二区三区无码影院| 日美韩一区二区三区| 国产+日韩+欧美精品| 成视频年人黄网站视频福利| 91人人妻人人爽在线视频| 新婚少妇无套内谢国语播放| 在线免费观看黄网| 亚洲av乱码国产精品观看麻豆| 嫩草嫩草嫩草嫩草嫩草| 1024亚洲男人的天堂久久| 在线精品亚洲观看不卡欧| 肉体公尝HD中文字幕| 免费人妻一区二区三区免费视频| 片涩涩涩的视频网站视频| 精品乱人码一区二区二区| 色婷婷av久久久久久久| 无码精品人妻系列| 国外av片免费看一区二区三区| 国产+日韩+欧美熟女| 免费在线观看中文字幕区| 嫩草欧美曰韩国产大片| 日韩人妻无码精品系列专区 | 熟女人妻av完整一区二区三区 | 神马久久久久久久久| 日韩字幕西瓜视频在线观看| 国产女生高潮视频免费网站| 日本三级带日本三级带黄| 大胆欧美高清videosedexohd| 人妻美妇av一区二区精品| 免费成人网一区二区三区| 欧美一区二区三区午夜视频| 久久精品人人做人人爽| 国产+日韩+欧美视频| 日韩三级片在线播放| 精品久久久噜噜噜久久| 国产丨熟女丨国产熟女视频 | 四川寡妇搡BBB爽爽爽| 日本老熟妇乱子伦精品| 巜波多野结衣私人教师| 中文字幕综合在线分类| 粉嫩av蜜桃av蜜臀av| 日韩精品亚洲aⅴ在线影院| 国产亚洲一区二区三区综合片| 免费黄色av网站| 国产视频一区二区二区三区| 成人国产一区二区三区精品不卡| 亚洲国产日韩成人a在线欧美| 国产精品人妻系列21p| 91日韩精品久久久久身材苗条| 国产+jk制服+在线| 久久综合久久自在自线精品自 | 亚洲一区二区影视| 美女国产毛片a区内射| 中文在线字幕免费观看电视剧日剧| 日韩精品在线第一页| 亚洲国产日韩欧美在线播放| 成人av一区二区兰花在线播放| 亚洲国产精品成人综合色区| 欧美黑人喷潮水xxxx| 91精品综合久久久久久五月天| 最新国产成人av网站网址麻豆 | 瑜伽+无码+thunder| 午夜精品一区二区三区在线播放 | 免费看国产一级特黄aa友片| 亚洲无码视频一区| 欧美xxxx免费虐| 中文字幕Aⅴ人妻一区二区| 国产精品久久久久久久久久免 | 国产精品久久久人人看人人| 尤物在线观看网站视频免费播放| 久久综合婷婷丁香五月中文字幕| 国产+精品+美女| 日韩一级二级视频| 成人免费动漫无码大片a毛片| 99国精品午夜福利视频不卡99| 精品欧美无人区乱码毛片| 8090+午夜福利视频+在线观看| 午夜精品久久久久久久99婷婷| 真人一级毛片全部播放| 欧美日韩免费观看一区=区三区| 国产精品女主播阳台| 欧美亚洲中文精品高清字幕| 国产精品久久久久蜜芽| 日本大香蕉高清在线观看| yjizz视频网| 国产成人精品精品日本亚洲| 国产一区二区三区在线视頻| 天堂日韩人妻一区二区三区| 非洲黑妞xxxxhd精品| 国产后入激情视频在线观看| 欧美高清69xxvideos18hd| 日韩丰满少妇无吗视频激情内射| 2021少妇久久久久久久久久| asian日本若图pics| 国产精品久久久久久久无毒| 法国色情巜卧室肉欲| 中文天堂在线播放| 欧美不卡视频一区发布| 国产精品美女久久久av软件| 成年人在线观看视频| 成人做爰100部片免费下载| 国产精品黄色资源免费在线观看 | 色婷婷一区二区三区四区| 亚洲天堂一二区免费播放| 国产亚洲视频中文字幕不卡| 欧美日韩亚洲成人| 日韩精品网站在线观看| 国产精品久久久久AV福利动漫| 2021国产精品午夜久久| 日韩欧美中文字幕在线一二三区 | 亚洲精品久久久无码av片软件| 666妺妺窝人体色WWW| 久久人人97超碰国产亚洲人| 手机在线一区二区三区| 人妻少妇邻居少妇好多水在线| 亚洲成人av在线| 中文字幕一区三级久久日本| 欧美一区二区激情| 国产又黄又粗又爽又色的视频| 亚洲丶国产丶欧美一区二区三区| 丰滿老熟婦HD六十| 精品成人一区二区三区四区| 国产精品日韩欧美一区二区| 国产山东熟女48嗷嗷叫| 日韩精品+久久久+免费观看| 欧美成人免费在线观看| 国产美女网站18禁| 东京亚洲女图片在线观看| av片在線觀看永久免費| 免费国产精品自偷自偷免费看| 亚洲精品视频在线观看网址网站| 亚洲韩国日本va精品国产一区 | 日韩欧美一区二区在线| 日韩国产高清在线| 亚洲а∨天堂久久精品喷水| 色偷偷偷久久伊人大杳蕉| 国产目拍亚洲精品99久久精品| 日韩三级一区二区三区| 亚洲一区二区三区四区在线播放| 伊人精品成人久久综合软件| 国产乱国产乱老熟| 国产亚洲日韩欧美另类第八页| 北条麻妃42部无码喷潮| 四虎影视无码永久免费| 国产又粗又长又硬又黄视频 | 日本中文字幕在线不卡视频一区| 午夜视频在线观看一区| 日韩欧美成人免费观看| 成人含羞草一区二区三区| 亚洲+综合久久+成人av| 91在线喷水白浆| 《漂亮的女邻居5》hd| 波多野吉衣免费一区| 日韩视频无码免费一区=区三区| 香蕉久久av一区二区三区| 国产成人一区二区精品九色| 欧美一级视频在线观看三级| 白丝+美女+高潮| 久久天堂无码av网站| 国产又粗又猛又爽的视频a片| 国产精品自拍合集| 久久老子午夜精品无码怎么打| 天堂网www在线最新版资源| 久久99国产精品久久99果冻传媒 | 动漫成年美女h漫网站漫画| 一本大道大臿蕉视频无码| 羞羞色院91精品网站| 国产一区精品视频| 91免费国产高清视频| 探花视频免费观看高清视频 | 茄子香蕉榴莲草莓丝瓜绿巨人污| 国产日韩精品一区在线观看| 国产精品视频一二区| 欧美日韩二区三区| 国产精品久久久久av熟女老人| 中文字幕高清在线| 亚洲精品乱码久久久久久花季 | 亚洲av无码一区二区乱子仑| 午夜福利国产精品久久超碰最新| 欧美日一区二区三区| 成人午夜视频在线| 激情一区二区三区| 国产精品久久久人人看人人| 三级黄色免费网站| 国产视频xxxx| 国产+在线+激情| 天天综合亚洲色在线精品| 小小小蜜桃6免费观看电视剧高清 人人爽人人奭人人片AV | 伊人精品成人久久综合软件| 亚洲黄色一区大陆av剧情| 激情视频免费在线观看| 精品亚洲欧美日本在线观看| 国产一区二区三区视频在线播放| 国产三级精品三级在线| 狠狠综合久久av一区二区蜜桃| 人妻秘书香汗av一区二区| 粉嫩av一区二区在线播放免费| 九色在线观看视频| 九色porny视频| 97久章草在线视频播放| 爆乳亚洲一区二区'| 丰满人妻熟妇乱又仑精品| 国产精品久久久91| 国产精品99久久久久的智能播放 | 91无人区乱码卡一卡二卡| 国产传媒麻豆剧精品av国产| 洋妞+国产+在线播放| 91麻豆国产精品91久久久久| 亚洲国产高清aⅴ视频| 亚洲一区二区三区无码影院| 中文字幕资源在线| 国产男女无遮挡猛进猛出| 操老女人一区二区三区视频tv| 日本在线观看免费| 一区二区三区在线观看精| 久久成人在线视频| 国产二级一片内射视频插放| 波多野无码肉欲HD| 男人天堂视频在线观看| 3344国产永久在线观看视频| 91成人在线视频| 国产午夜亚洲精品国产成人最| 亚洲色欲色欲www在线看小说| 男人天堂视频网站| 久久久亚洲精品成人| 在线日韩av永久免费观看| 国产精品久久精品免费视频| 丰满的女人一区二区三区| 久久99精品国产免费观观| 免费在线观看91精品美女| 日韩欧美在线不卡| 无码+成人+种子下载| 美里麻衣无码番号| 精品国产丝袜黑色高跟鞋美女| 欧美午夜精品久久久久久杨幂| 久久精品嫩草影院| 久久香蕉综合网精品视频| 久久久久久综合网天天| 熟妇人妻系列AV无码一区二区| 欧美+成人+后入| 中文字幕第一頁亞洲| 日韩高清亚洲日韩精品一区二区| 成人午夜精品无码区久久| 91丝袜呻吟高潮美腿白嫩综艺| 久久人妻公开中文字幕| 桃子视频在线观看免费视频网| 国产在线观看香蕉视频网| 大地资源二中文在线观看下载 | 高清国产下药迷倒白嫩| 少妇精品无码一区二区免费视频 | 日韩做a爰片久久毛片a片| 18+在线观看视频| 99国产综合精品| 伊人久久大香线焦av综合影院| 日韩少妇激情一区二区| 亚洲国产精品一区二区美利坚 | 国产欧美在线观看不卡| 亚洲AV人无码激艳猛片| 日韩精品内射视频免费观看| 免费+精品+国产精品| 一区二区免费视频中文乱码| 欧美日韩免费观看一区=区三区| 日韩美女搞黄视频一区二区| 久久男人av资源网站无码| 日本一本高清中文字幕视频| 亚洲午夜精品一区二区三区国产| 又大又粗又硬又爽黄毛少妇 | 婷婷色九月综合激情丁香| 国产亚洲又爽ⅴa在线天堂| 国产精品国产三级国产av剧情| 中国国产免费毛卡片| 国产成人精品日本亚洲77美色| 四虎成人影视8848亚洲| 天堂网www在线资源网| 激情综合丁香五月| 丰满少妇凹凸BBBB是合法的吗| 久久精品苍井空精品久久| 51吃瓜网每日大赛今日大赛| 拍拍拍无挡免费视频| 虫虫漫画免费漫画弹窗入口| 国产欧美亚洲首页| 大伊香蕉精品视频在线| 91精品国产一区二区三密臀 | 中文亚洲无线码49vv| 成人做爰a片免费看网站找不到了| 亚洲永久免费视频| 国语对白做受xxxxx在线| 国产美女直播亚洲一区久久| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解| 久久偷看各类wc女厕嘘嘘| 精品少妇一区二区三区在线观看 | 制服丝袜在线视频| 欧美污视频免费在线观看| 国内久久精品视频| 国产精品熟女亚洲av麻豆| 亚洲成人免费观看| 国产精品久久久久久久久裸体| 强伦少妇A片视频| 女人爽到喷水的视频免费看| 狠狠色丁香婷婷久久综合蜜芽 | 日韩欧美国产综合第一页| 日韩毛片+白丝+玉足| 在线观看特色大片免费网站| 蜜臀午夜精品视频在线观看 | 黄色激情视频网站| 久热中文字幕第一区二久| 粗大猛烈进出高潮视频免费看| 中国东北少妇bbb真爽| 三年DVD大全视频| 91插插插com| 国产美女视频精品黄频免费观看 | 国产一级免费观看| 野外少妇被弄到喷水在线观看| 国产亚洲Av人片在线观看| 亚洲精品视频免费| 欧美+国产+麻豆| 香蕉久久av一区二区三区app| 69视频免费观看| 2019久久视频这里有精品15| 日本丰满老熟妇乱子伦| 羞羞影院午夜男女爽爽免费| 国产又黄又猛又粗又爽的a片动漫| 欧美一级视频免费观看| 无码av中文一区二区三区| 18+漫画在线看| 欧美精品乱人伦久久久久久| 国产传媒麻豆剧精品av| 最新国产av最新国产在钱| 国产精品人成在线播放新网站| 午夜免费福利在线| 日韩精品+久久久+免费观看| 国产美女精品中文网蜜芽宝贝| 成人av片手机在线播放| 久久av无码aⅴ高潮av喷吹| 国产精品点击进入在线影院高清| 国产激情з∠视频一区二区| 麻豆国产一区二区三区| 亚洲av色香蕉一区二区| 无码中文字幕日韩专区视频| 成人做爰A片免费看黄冈宾馆| 中文字幕中文字幕在线网| 午夜福利国产精品久久| 97精品免费视频| 国产一级av一区二区在线| 少妇人妻无码专区毛片| 亚洲永久精品ww47| 美女互摸视频一区二区三区 | 欧美在线人视频在线观看| 又色又爽又黄的视频网站| 国产精品人人爽人人做av片| www欧美视频在线免费观看| 黄色免费网站在线| 亚洲国产天堂视频在线播放| 囯产精品久久777777换脸| 又爽又色禁片1000视频免费看| 欧美+国产+麻豆| 免费+高潮+白丝| 91精品视频一区二区三区| 国产乱码卡二卡三卡老狼| 四虎影院在线观看免费| 日韩人妻无码精品系列专区| 美女互摸视频一区二区三区| 亚洲人妻av理论琪琪在线| 免费国产一级特黄久久| 亚洲精品有码在线观看| av在线播放+亚洲+不卡| 黄色小视频在线看| 天天色香色欲影视| 免费黄色小视频在线观看| 久久99热只有频精品8国语| 国产+高潮+精品| 欧美+视频+中文字幕| 99久久亚洲综合精品成人网| 亚洲精品a片99久久久久| 亚洲十八禁深夜福利| 泽井芽衣+磁力链接+mp4| 天堂视频入口免费在线观看| 天天躁夜夜躁天干天干2022| 国产精品白嫩极品美女| 成人精品视频网站| 国产+自慰+先锋影音| 在线观看国产色视频网站| 国产欧美日韩一区二区三区在线| 中文字幕乱码一区av久久不卡| 日本在线一区二区三区欧美| 国产+白浆+免费| 日韩高清特级特黄毛片| 亚洲欧洲国产成人综合在线| 久久精品日产第一区二区三区在哪里| 亚洲欧美洲成人一区二区三区 | 日本精品不卡免费在线播放| 精品中文字幕免费在线观看| 99国产综合精品| 国产美女91呻吟求| 一级做a爰片久久毛片a| 日本精品视频在线观看一区| 曰韩亚洲av人人夜夜澡人人爽| 人人妻人人添人人爽欧美一区| 欧美狠狠入鲁的视频| 国产又猛又黄又爽| 日韩亚洲国产中文字幕欧美| 久久精品国产99精品国产2021| 色欧美福利视频看看午夜| 国产91精品一区二区麻豆观看| 西西888WWW大胆无码| 最新版天堂资源中文在线| 超碰+国产+在线| 精品久久久久久中文字| 好吊妞国产欧美日韩免费观看| 免费观看一区二区三区视频| 国产精品午夜成人免费观看| 嫩BBB槡BBBB槡BBBB18| 精品视频中文字幕| bt天堂在线bt网| 欧美日韩中文字幕在线xxx| 有码+欧美+国产| 新一级三级片国语版| 国产精品久久久久AV福利动漫 | 日本卡2卡3卡4卡5卡精品视频| 18+泰剧+日韩毛片| 精品美女视频在线观看免费 | 精品欧美激情精品一区| 亚洲中国国产av| 欧美日韩国产一级片免费网站| 人妻熟女一区二区aⅴ向井蓝| 亚洲欧美日韩人成在线播放| 免费视频www在线观看网站| 国产+免费+自拍| 亚洲精品欧美精品在线观看视频| 大地资源二中文在线官网| √资源天堂中文在线| 狼伊人一级免费毛片| 99久久国产自偷自偷免费一区 | 亚洲欧美日本中文字天堂| 毛片视频在线免费观看| 欧美+日本+国产在线观看| 欧美成人亚洲综合第一页| 少妇无码av无码去区钱| 日韩本毛片高清免费视频| 少妇av一区二区三区| 国产精品18久久久久久麻辣| 午夜福利影院私人爽| 日韩精品福利片毛片在在线看的| 北条麻妃精品99青青久久水牛影视| 久久久精品人妻久久影视| 免费国产一级特黄久久| 麻豆黑色丝袜jk制服福利网站| 特级西西444www无码视频免费看 | 4488CC.成人A片| 国产亚洲日韩欧美另类第八页 | 久久老熟妇精品免费观看| 欧美精品一区二区在线观看播放| 成人a免费视频中文字幕| 色偷偷噜噜噜亚洲男人| 久久国产精品午夜福利看片| 亚洲欧美一级久久精品国产特黄| 偷拍一区二区三区| www.在线观看麻豆| 国产在线观看99| 欧美国产成人精品一区二区三区| 国产成人一区二区三区在线播放 | 亚洲一区二区天堂| 国产成人精品男人的天堂网站| 黄色av一区二区三区四区| 一本到12不卡视频在线dvd| 天堂网一区二区三区| 99国产精品国产精品精品| 天天干天天射天天爽| 在线观看日韩欧美综合黄片| 欧美精品一区二区在线观看播放| 久久网美女黄色视频网站 | 99久久国产综合精品女同| 黑人巨鞭大战欧美熟妇| 久久精品道一区二区三区 | 国产成人综合久久精品免费| 亚洲成亚洲乱码一二三四区软件 | 色久综合网精品一区二区| 欧美一区二区三区久久精品| 麻豆国产成人av高清在线观看| 制服丝袜在线视频| 亚洲国产欧美在线人成人| 国产主播户外勾搭人xx| 91久久精品国产| 成在人线Aⅴ无码免费高潮水| 欧美在线色视频在线观看| 新一级三级片国语版| 国产初高中生粉嫩无套第一次| 国产在线观看精品一区二区三区| 亚洲精品无码久久久久不卡网址| aaa欧美色吧激情视频| 日本丰满人妻久久久久久| 美女网站一区在线观看免费国产| 97超级精品综合网| 国产精品卡1卡2卡三卡四| 苍老师在线观看免费播放电视剧中文 | 久久人午夜亚洲精品无码区| 欧美精品三级黄片| 肥臀熟妇淫语对白| 8090成人午夜精品无码| 精品久久久久久久久久熟女| 在厨房拨开内裤进入毛片| 高清无码视频18| 欧美日韩免费观看一区=区三区| 91精品国产一区二区三区蜜臀| 岛国+激情+无码| 国产精品苏妲己野外勾搭| 免费在线观看AV| 亚洲成在人线av品善网好看| 久久99国产精品尤物| 看全黄色大色女爽一次免费久久| 最近更新中文字幕2019视频 | 国内精品九九久久久精品| 西西人体44WWW高清大胆| 欧美极品少妇xxxxⅹ免费视频| 干淫语对白骚妇视频| 亚洲欧美综合在线观看| 手机在线视频国产第二页| 国产真实伦在线观看视频| 精品婷婷乱码久久久久久| 国产99久9在线视频传媒| 国产欧美日韩亚洲18禁在线| 青草视频在线观看视频| 国产亚洲人成网站观看| 中文资源在线一区二区三区av | 国产激情久久久久久熟女老人| 天堂视频在线观看一二三区| 日本+国产+在线观看| 国产午夜精品福利视频| 美女被草+在线观看| 国产亚洲人成站在线播放国产99| 国产剧情v888av| 日韩人妻无码精品久久久不卡| 虫虫漫画免费漫画弹窗入口| 影音先锋+川上优| 国产+免费+福利| 日韩内射人妻1区2区3区| 国产精品情侣呻吟对白视频| 国产精品中文原创av巨作首播| 欧美日韩亚洲一区二区蜜桃臀| 日本一区二区三区四区18 | av在线免费观看一区不卡| 91亚洲国产成人精品一区二三| 国产高清视频在线| 免费网站永久免费入口| 久久天天躁夜夜躁狠狠85| 日本在线观看一区| 美女一区二区三区网av| 他用舌头给我高潮喷水在线| 欧美日韩成人在线免费观看| 黄页+国产+在线观看| 18+看片+日韩毛片| 中文字幕日逼网站| 日韩欧美一区二区三区四区| 久久这里只有是精品17| 911爆料在线吃瓜911资源| 亚洲精品国产主播在线三区| 国产欧美一区二区精品久久久| …伊人久久婷婷国产综合| а√天堂资源8在线官网在线| 国产乱女淫av麻豆国产| aaa少妇高潮大片免费看| 久久99精品国产免费观观| 天堂资源中文最新版在线一区| 日韩av免费观看一区二区三区| 国产精品情侣呻吟对白视频| 麻豆国产97在线| 亚洲ww44444在线观看| 亚洲精品成人国产黄瓜视频| 中文字幕视频在线欧美一区| 8090+午夜福利视频+在线观看| 亚洲AⅤ无码国精品中文字慕| 亚洲AV日韩AV无码黑人| 国产精品伦一区二区三级视频永妇| 精品成人乱色一区二区| 欧美激情一区二区三级高清视频| 国产内射一区二区xxx| 中文字幕精品亚洲无线码一区 | 最新日韩精品中文字幕| 少妇高潮喷水久久久久久久久久| 日韩欧美在线第一页| 国产精品国产精品国产专区蜜臀ah | 丫丫影院免费观看电视剧| 久久精品国产亚洲av麻豆尤物| 国产又粗又长又硬又爽又黄视频 | 自拍偷拍亚洲色图日韩欧美| 女人18a级毛片精品人妻| 男女做www免费高清视频网站| 国产午夜福利久久精品| 女人做爰高潮全黄| 欧美在线色视频在线观看| 熟妇槡BBBB槡BBBB| 99热这里有的只是精品| 在线观看黄片免费入口不卡| 四虎影视在线观看国产精品| 无码+磁力链接+下载| 免费+岛国+h动漫| 国产+激情+喷水| 丁香花在线影院观看在线播放| 亚洲国产高清在线一区二区三区 | 亚洲人妻内射一区二区三区| 中文字幕久久波多野结衣av不卡 | 欧美日本一区二区三区| 亚洲国产高清在线一区二区三区| 伊人久久大香线蕉综合影院首页 | av综合网男人的天堂| 亚洲男女一区二区三区| 天堂在线www天堂在线| 探花风韵犹存少妇88AV| 天摸夜夜添久久精品亚洲人成| 国产精品无需播放器在线观看 | 国产+欧美+日本| 欧美三级在线观看视频| 日本天天日天天干| 久久久精品午夜国产免费| 手机看片福利永久国产香蕉| 国精日本亚洲欧州国产中文久久| 99热门精品一区二区三区无码| 精品国产乱码一区二区三区99 | 美女+人妻+日韩毛片| 免费成人午夜福利在线观看| 亚洲精品国产精华液| 蜜臀精品国产高清在线观看| 丁香花影院在线观看免费播放电视剧| 久久久久久老熟女国产999| 欧美激情一区二区视频| 国产精品h片在线播放| 午夜精品第一区第二区第三区| 国产高清视频一区| 欧美高潮潮喷奶水飞溅视频无码| 9久久国产精品免费视频| 九九影院电视剧免费播放观看| 国产日韩欧美区二区三区四区 | 亚洲国产香蕉视频精品一区| 91绿帽黑人系列一区| 丝袜+欧美+国产| 美女高清久久久久久小视频| 国产精品亚洲精品日韩动图| 中文在线观看免费| 久久免费看少妇高潮a| 欧美乱码熟妇色精精品| 国产精品精品久久久久久一| 中文字幕在线观看日本| 大地资源二中文官网| 国模大尺度福利视频在线| 熟女露脸91Porn| 成人亚洲欧美日韩在线观看| 成人在线免费播放视频 | 亚洲视频在线免费观看一区二区| 国产精品久久久久久久久久不蜜月| 国产午夜福利在线观看红一片| 国产一级视频在线| 国产国拍亚洲精品永久软件| 久久久www成人免费精品| 精品国产不卡一区二区三区| 免费播放高清毛片A片色情天雨水多| 一级片在线免费观看| 亚洲国产成人在线视频| 久成人免费精品xxx| 国产一区高清视频在线观看| 在线免费看av网站| 日韩+国产+在线高清| 亚洲人成伊人成综合网小说| 91n免费处女在线| 最日本中文字幕中文翻译歌词 | 农夫+导航+亚洲| 人妻激情乱人伦视频| 亚洲日韩精品一区二区三区无码| 特级西西444www无码视频免费看| 国产精品人妻系列21p| 中文人妻无码一区二区三区信息| 久久精品国产免费看久久精品 | 337p日本欧洲亚洲大胆在线| 国产剧情v888av| 欧美一级在线a级在线视频| 国产精品一卡2卡三卡4卡| 国产三级国产三级国产| 欧美成人午夜剧场| 国产热a欧美热a视频在线观看| 亚洲精品国产一区二区三区在线观看 | aⅴ网站在线观看| 国产激情无套内精对白视频 | 成人精品综合免费视频| 五十路丰满中年熟女中出| 四虎影视在线永久免费观看| 在线观看国产色视频网站| 97成人精品区在线播放| 亚洲av女优一区二区三区三州| 久久久久国产精品免费免费搜索| 影音先锋+写真+日韩| 国产精品一级片久久久久| 免费在线观看亚洲| 中文字幕一区二区三区四区视频| 国产三级视频播放线观看| 伊人久久大香线蕉综合av| 国产av综合第1页| 亚洲成av人影院| 久久www人成免费看片中文| 亚洲天天做日日做| 国产乱人伦精品一区二区_国产91在线 | 免费成人网一区二区三区| 日本欧美久久久久免费播放网| 国产女主播尤物视频在线观看| 2022亚洲无砖无线码| 五月激激激综合网色播| 人妻NP〈慎入〉H在线视频| 麻豆黑色丝袜jk制服福利网站| 久久久久久臀欲欧美日韩| 欧美日韩在线观看视频| 国产成人av大片在线观看| 97在线观看永久免费视频| 天堂а√在线地址中文资源| 日本高清色本在线WWW| 嫩草影院ncyy| 欧美热久久这里只有精品| 黑人一区二区三区| 在线观看成人国产三级网站视频| 黄色一级大片一区二区三区| 区一区二在线观看| 日本熟妇黑毛浓密白浆| 国产一二三四视频在线观看| 山东乱子伦视频国产| 99pao在线视频国产| 美日韩丰满少妇在线观看| 亚洲精品国产精品99久久| videosxxxx老女人| 天堂网一区二区三区| 男人下部进女人下部视频| 久久精品国产亚洲aa级女大片| 日韩国产成人精品视频| 亚洲乱码中文字幕 | 漫画免费观看漫画大全| 日本精品久久久久久| 欧美另类一区二区| 精品人妻伦一二三区久久竹夫人| 拍拍拍产国影院在线观看 | 国产天堂123在线观看| 国产欧美日韩一区二区三区66| 国产一级特黄aaa大片评分| 99国产拍偷久400部热久久| 亚洲mv高清砖码区2022伊甸园| 久久精品亚洲精品国产欧美| 亚洲第一区欧美国产不卡综合| 精品国产无乱码一区二区| 秋霞午夜伦高清在线观看| 妺妺窝色77777777野| 亚洲成a人一区二区三区| 2019日韩中文字幕| 国产美女内射啊啊高潮在线网页| 国产真人真事毛片视频| 美女18禁永久免费观看网站| 中日韩国产高清在线观看| 精品一区二区三区四区| 一边摸一边抽搐一进一出口述| 国产一级久久久久av片| 三级高清日本久久| 成人av一区二区兰花在线播放| 一区二区三区偷拍| 亚洲香蕉网久久综合影视| 电视剧大全免费全部在线观看| 中文久久乱码一区二区| 50路の垂乳な肉体| 亚洲欧美不卡高清在线| 亚洲午夜福利精品无码不卡| 国产精品国产三级国AV麻豆| 伊人狠狠色丁香婷婷综合| 久久久av高清一区二区| 国产精品丝袜一区二区| 国产av天堂一区二区三区粉嫩 | 猫咪www免费人成网站无码| 日韩精品视频主播在线播放| 七仙女大乳全黄裸体| 国产+日韩+欧美| 国产精品二区高清在线| 99精品国产一区二区三区麻豆| 香蕉视频1024| 中文字幕欧美日韩va免费视频| 国产l精品国产亚洲区在线观看| 亚洲精品入口一区二区乱| 日韩欧美aaaa羞羞影院| 国产精品视频在视频| 日韩激情+一区二区三区+中文字幕| 惠民福利国产美女爽到喷出水来视频| 亚洲乱码中文字幕| 国产欧美亚洲精品第1页| 日本福利视频一区| 亚洲精品国偷拍自产在线| 无码aⅴ精品一区二区三区浪潮 | 久久久橹橹橹久久久久| 国产欧美精品一区二区三区三| 农村末发育av片一区二区| 国产成人一区二区三区久久精品| 欧美日韩国产一区二区三区| 欧美精品久久久久久久久久久| 欧美+日本+国产| 特级西西444www大胆免费看| 99久久国产综合一区二区| 精品+无码+免费| 久久99精品久久久久久HB无码| 99re在线视频这里只有精品| 亚洲男人天堂一区二区在线观看| 久久婷婷国产剧情内射白浆| 久久精品人妻中文系列| 日韩欧美一区二区在线观看视频 | 亚洲精品久久久久久久久av无码 | 亚洲精品偷拍无码不卡av| www欧美视频在线免费观看| 久久午夜无码鲁丝片秋霞| 亚洲婷婷五月综合狠狠app| 99久久夜色精品国产亚洲| 成年偏黄全免费网站| 中文有码人妻熟女久久| 国产精品婷婷色综合www在线| 污污内射在线观看一区二区少妇| 欧美成人精品三级在线观看播放| 欧美aaaa视频| 国产精品国产三级国av麻豆| 国产精品污污网站在线观看| 成人伊人青草久久综合网| 最近中文字幕在线视频8| 中文字幕免费高清电视剧网站| 大战丰满大白屁股女人 | 波多野吉衣免费一区| 成人av一区二区兰花在线播放| 少妇人妻综合久久中文字幕 | 老牛嫩草一区二区三区消防| 国产av深夜精品福利专区| 国产又粗又猛又爽又黄视频 | 亚洲欧美日韩精品国产91| 国产视频一区二区在线免费观看 | 91精品国产一区二区三区蜜臀| 色久悠悠婷婷综合在线亚洲| 久青青在线观看视频国产| 无遮挡国产高潮视频免费观看互動交流 | 日本老头吃嫩草HD| 国产精品r级最新在线观看| 国产成人久久精品二区三区| 国产+喷水+高潮| 24小时日本mv在线视频| 嫩草嫩草嫩草久久水拉丝了| 玩弄少妇人妻中文字幕| 久久中文字幕乱码久久午夜| 亚洲欧美日韩另类精品一区二区三区 | 黄瓜视频在线观看| 久久精品无码中文字幕| 国产成人精品一区二区在线| 中文字幕亚洲一区视频在线观看| 国产蝌蚪视频在线观看| 18禁黄网站男男禁片免费观看 | 中文字幕乱偷无码av先锋蜜桃| 午夜国产精品久久久久久| aaa少妇高潮大片免费看| 国产+资源+视频播放器| 久久久久久国产精品高清| 18+sexporn| 亚洲+中文字幕+人妻| 日韩精品中文字幕久久臀| 小视频在线观看免费日本色| 久久精品国产亚洲av高清蜜臀| www.五月婷婷.com| 在线精品亚洲一区二区小说| 九色手机在线视频播放| 国产成人久久精品亚洲小说| gav成人网免费免播放器播放| 在线看片人成视频免费无遮挡| 免费无码黄网站在线观看| 日韩欧美在线精品| 亚洲品质自拍视频网站| 亚洲精品国产精品色诱一区| 日韩欧美一级视频在线观看| 日本久久综合久久综合| 黄色av一区二区| 重囗味sM群虐一区二区| 精品卡一卡二卡3卡高清乱码| 樱花影院电视剧免费| 国产精品欧美二区66| 欧美国产日韩在线观看视频一区| 色婷婷av一区二区| 久久国产精品久久久久久电车| 视频+国产+免费| 午夜丰满极品美女A片| 一区二区三区四区免费视频| 老司机在线精品视频网站| 蜜臀国产在线观看激情网| 麻豆国产97在线精品一区| 丰满人妻被黑人中出849| 国产精品免费视频观看| 国产午夜影视大全免费观看| 女人高潮奶头翘起来了| 一本色道HEZYO无码专区| 青青草免费在线视频| 免费在线观看AV| 精品国产乱码久久久久久浪潮小说| 国产高清精品软件| 国产高潮在线观看www| 国产免费观看又黄又爽视频网站| 亚洲天堂2017无码| 色综合天天综合天天摸天天爽| 国内精品在线播放| 亚洲国产日韩精品在线观看| 亚洲成a人v欧美综合天堂麻豆 | 大香蕉在线视频观看75| 日韩欧美精品人妻二区少妇 | 欧美中文字幕在线| 日韩欧美高清在线一区二区 | 高清国产一区二区| 亚洲高清在线观看一区二区三区| 伊人干网综合亚洲| 怡红院怡春院视频免费看| 安徽少妇BBB凸凸凸BBB| 亚洲人成网站18禁止中文字幕| 美女视频图片久久黄网站| 91中文字幕在线| 瑜伽+无码+thunder| 国产一级真人做受| 精品噜噜噜噜久久久久久久久| 国产成人亚洲精品另类动态图| 双乳奶水饱满少妇呻吟免费看| 少妇高潮7777777丫乄| 91久久国产精品视频| www黄色com| 日韩一区二区三区视频| 久久久精品成人免费影院| 欧美极品少妇xxxxⅹ免费视频| 国产人交视频xxxcom| 2018年亚洲欧美在线视频| 久久久无码精品午夜| www91免费视频| www.亚洲欧美成人影院| 少妇内射兰兰久久| 成人精品一区二区三区中文字幕| 精品国产av一区二区三区√| 红莲两瓣夹玉柱最经典四句话 | 日韩av在线播放+免费| 青娱乐极品视觉盛宴av| 香蕉视频在线网址| 国产精品一卡2卡三卡4卡| 欧美亚洲人成在线观看网站| 热99国产精品久久久久久久| 久久www人成免费看片中文| 98精品偷拍视频一区二区三区| 亚洲精品国精品久久99热一| 精品国产丝袜黑色高跟鞋美女| 国产成人啪精品视频免费网页| 久久99av无色码人妻蜜柚| 97夜夜澡人人双人人人喊| 国产+自慰+先锋影音| 久久精品国产自在天天线| 苍井空一级婬片A片AAA片动漫| 亚洲最新无码成av人| 中文字幕无线码免费人妻| 男女猛烈激情xx00免费视频| 色88欧美日韩国产无线码| 欧洲视频免费网站在线播放 | 国产老师开裆丝袜喷水视频| 丰满美女一级视频一区二区三区 | 女人18a级毛片精品人妻| 欧美+国产+综合| 91精品视频在线看| 日韩精品av在线免费观看| 妈妈你真棒插曲mv在线观看免费| 一区二区三区四区黄色片| 青青草国产午夜精品| 亚洲Av乱熟妇A片大全| 国产精品h片在线播放| 岛国精品一区免费视频在线观看| 三年片在线观看高清完整版| 18成人福利网站在线观看| 国产成人精品午夜福利在线观看 | 中文字幕久久久人妻无码| 影音先锋+无码高清| 懂色av色吟av夜夜嗨| 国产精品成人av在线观看春天| 女人18a级毛片精品人妻| 亚洲手机在线人成网站| 成人欧美一区二区三区在线| 人人妻天天爽夜夜爽精品视频| 国产精品自在线拍国产| 国产成人精品久久久| 亚洲国产日本韩国欧美mv| 国产精品一卡2卡三卡4卡| 国产1234区2023| 欧美日韩另类图片亚洲视频| 《朋友的妈妈2》中字头歌词华丽的外出| 成人一区在线观看| 天天综合天天做天天综合| 日韩av在线一区二区三区| 久久精品国产亚洲精品166m| .17c嫩嫩草色视频| 欧美二区乱c黑人| 99re视频在线| 乱人伦中文视频在线观看| 99久久精品费精品国产| 天干夜啦天干天干国产免费| 国产明星精品一区二区刘亦菲| 日韩欧美国产一区二区在线播放| 亚洲乱码在线卡一卡二卡新区豆瓣| 欧美日韩综合精品无人区| 一本一道人人妻人人妻ΑV| 国产精品久久久久久免费免熟| 国产精品99久久久久的智能播放 | 午夜福利国产精品久久超碰最新| 精品无人区麻豆乱码1区2区| 国产福利一区二区三区在线视频| 亚洲国产精华液网站w| 人妻美妇疯狂迎合系列视频| 国产精品白丝美女免费在线观看 | 黄色一级大片在线免费看产| 精品久久久久久中文字幕大豆网| 日韩免费无码专区精品观看| 亚洲欧美在线视频| 日韩高清av免费在线观看| 日韩欧美精品一区二区蜜臀| 国产精品久久久久久网站| 韩国美女一区二区在线观看视频| 亚洲va欧美va天堂v国产综合| 黑人强辱丰满的人妻熟女| 欧美v欧美v视频在线观看视频| 激情午夜福利在线视频观看| 操老女人一区二区三区视频tv| 国产精品高清一区二区不卡片| 国产午夜福利久久精品| 玖玖资源站无码专区| 玖玖无码中文字幕五月天| 夜夜高潮次次欢爽av女| 久久99国产精品尤物| 国产在线激情小视频国产馆| 加勒比东京热一本大道| 亚洲激情av在线| 日韩精品人妻2022无码中文字幕 | 日本无遮挡吸乳视频| 精品国产欧美一区二区三区不卡 | 亚洲精品国产主播在线三区| 99久久久久国产精品免费| 无码专区亚洲制服丝袜| 一点不卡v中文字幕在线| 在线观看免费国产中文字幕| 图片小说视频一区二区| 亚洲欧美精品中文一区二区三| 国产亚州精品女人久久久久久| 91精品福利在线观看| 色播视频在线播放| 台湾+无码+先锋影音| 国产一国产二国产三| yy6080亚洲精品一区| 人与嘼一区二区三区免费| 国产+麻豆+免费观看| 国产+日韩+欧美精品| 真人女处被破69x176cc| 欧美成人一区二区三区| 色情无码一区二区三区| 色综合久久综合欧美综合网| 秋霞特色aa大片| 亚洲综合天天夜夜久久| 很色很爽很黄裸乳视频| 欧美国产一区二区三区小说| 天天爽夜夜爽国产精品视频| 精品亚洲国产成人av在线| 激情久久av区二区av| 藏精阁成人免费观看在线视频| 国产精品久久久久久久久免费相片| 中文字幕老妇昭和肉欲| 在线观看一区二区国产欧美| 精品熟妇av一区二区三区四区| 国产精品99久久久久久董美香| 国产偷国产偷av亚洲清高| 动漫无遮挡羞视频在线观看| 白又丰满大肉唇BBW| 秘书奶咪子真大高H乳夹| 亚洲中文字幕欧美日韩在线| 日韩精品国产一区在线久草| 张津瑜国内精品www在线| 成人毛片18女人A片免费观看成人在| www.日韩免费观看视频| 亚洲天堂视频免费观看网站| 亚洲欧美韩国日本在线一区二区 | ww污污污网站在线看com| 中文字幕无码免费久久| 99久久精品无码一区二区毛片| 18+在线视频网站| 国产+剧情+喷水| 97SE亚洲精品一区| 东北少妇BBBB搡BBB搡| 极品白嫩少妇无套内谢| 国产毛片乡下农村妇女bd| 亚洲视频手机在线观看| 泽井芽衣+磁力链接+mp4| 97超级精品综合网| 在线最新av免费费观看| 若妻~夫の肉欲中文字幕 | www.久久美女视频网| 老司机成人精品视频在线观看| 国模大尺度福利视频在线| 毛片视频在线免费观看| 午夜福利理论片高清在线观看| 东北少妇不带套对白| 大地影视中文资源3| 国产绿帽精黑人X88AV| 久久免费黄色网址| 天堂网一区二区三区| 欧美一级一区二区三区| 97超级碰碰人国产在线观看| 国产成人精品精品日本亚洲| 国产微拍精品一区| 69视频免费观看| www.黄片.com| 国产又爽又黄无遮挡免费视频| 精品免费国产一区二区三区四区介绍| 精品欧美无人区乱码毛片| 国产一二三四视频在线观看| 亚洲第一成人av| 成人在线视频网址| 欧美日韩亚洲综合精品第一页 | 中文字幕+乱码+www| 成人a大片在线观看| 日韩精品手机在线| 久久久福利视频免费观看| 国产精品综合在线| 高清亚洲中文字幕在线观看| 国产精品福利网红主播| 国产真人真事毛片| 国产无套粉嫩白浆内的人物介绍| 国产乱色国产精品免费视频| 日韩裸体人体欣赏pics | 韩国主播av福利一区二区| 国产成人在线视频| 亚洲又黑又粗又硬又爽视频| yy111111少妇嫩草影院| 日韩第一页视频在线观看| 高潮+喷水+免费| 少妇精品揄拍高潮少妇| 欧美日韩国产精品久久乐播 | 欧美又粗又大又硬久久久| 人妻丰满熟妇av无码区免| 四十路の完熟豊満无码| 亚洲精品无码久久不卡| 精品国产av一区二区三区蜜臀 | 真实国产乱子伦一区二区三区| 99精品全国免费观看视频| 日本很黄色的网站一区免费观看| 成人免费精品网站在线观看影片| 日韩av大片在线观看| 欧美国产中文字幕在线视频| 中国美女毛片视频免费看| 亚洲+日本+高清| 亚洲欧美国产一区二区三 | 亚洲欧洲精品在线| 国产美女午夜福利视频| 欧美亚洲国产另类第一页| 国产乱公伦媳在线播放| 国产亚州精品女人久久久久久| 一区二区三区精品视频| 国产成在线观看免费视频密| 国产亚洲欧美视频在线观看| 高清午色夜国产精品| 国产精品久久久久久久久免费丝袜| 一区二区免费欧美| 久久久久久久久淑女av国产精品| 国产精品区一区二区在线观看| 免费看又色又爽又黄的国产| 欧美日韩亚洲成人| 国产精品嫩草影院久久久| 国产午夜亚洲精品国产成人最| 亚洲婷婷天堂在线综合| 免费无码一区二区三区蜜桃| 美女极度色诱图片www视频| 国产又黄又粗又爽又免费| 国产成人A∨在线观看不卡| 中文字幕丰满人伦在线| 国产剧情国产精品一区| 天天综合在线观看| 国产精品久久久av免费不卡| 麻花传媒人妻引诱水电工| 欧美三级韩国三级日本播放| 国内揄拍国产精品| 亚洲日韩一区二区一无码| 日韩亚洲av人人夜夜澡人人爽| 五月丁香久久丫婷婷一区不卡| 国产偷国产偷亚洲清高网站| 97国产乱码精品一区二区三上| 一区二区免费国产在线观看| 综合亚洲综合图区网友自拍| 最近在线更新8中文字幕免费| 中文字幕+乱码+日韩| 国产精品一区二av18款| 国产99久久久国产精品潘金| 九九热播视频三级香蕉黄网| 亚洲色大成网站www尤物| 欧美日韩国产一区二区三区 | 国产精品久久久久久久久裸体 | 久久99久久99精品免视看| 亚洲国产日韩视频观看| 又欲又肉又黄高h1v1| 亚洲国产麻豆精品系列av| 精品偷自拍另类在线观看| 牛牛在线免费视频| 国产精品一区二区三区va| 久久久国产丝袜美女| а√天堂+地址+在线| 欧美一区二区三区激情桃蜜臀| 中文在线字幕观看电视剧hd| 高清视频在线观看+免费| 娇妻被黑人伦轩1~14| 久久国产乱子精品免费女| 9+1+视频在线| 91精品国产麻豆久久久久久| 老汉tv永久视频福利在线观看| 午夜成人片在线观看免费播放 | 日韩成人中文字幕| 午夜成人片在线观看免费播放 | 窝窝影院在线播放免费观看电视剧 | 亚洲一卡二卡三卡四卡免费视频| 国产又黄又爽又色的免费视频| ⅹⅹⅹ黄色片视频| 日本最大色倩网站www| 午夜爽爽爽男女免费观看一区二区| 麻豆国产尤物av尤物在线看| 在线人视频观看免费| 久久网美女黄色视频网站| 免费日本久久a视频一区二区| 日韩欧美中文字幕一区二区| 国产精品欧美三区四区五区| 国产精品亚洲欧美一区二区| 91香蕉国产线观看免费永久| 国产+高潮+刺激| 欧美v国产在线一区二区三区| 日本亚洲视频在线不卡免费| 国产高清视频在线观看免费视频 | 国产尤物精品自在拍视频首页| 久久国产亚洲精品超碰热| av无码av天天av天天爽仙踪林| 精品国产乱码一区二区三区小黄书| 国产精品视频色尤物yw| 国产精品毛片在线完整版| 亚洲日韩精品一区二区三区无码| 欧美一级三级完全免费观看| 人妻少妇中文字幕乱码| 国产精品欧美久久久无广告| 51视频国产精品一区二区| 中文字幕+欧美精品+制服丝袜| 麻花免费观看nba高清在线| 欧美日韩另类图片亚洲视频| 国产精品一区二区三区四区亚洲| 国产又黄又粗又硬的视频| 主播福利视频一区二区三区| 最新国产精品精品视频| 国产精品青草综合久久久久99| 日韩欧美中文字幕在线视频| 日韩欧美精品一区二区三区四区| 国产69精品久久久久777| 玩爽少妇人妻系列| 国产亚洲精品福利视频在线观看| 欧美一区二区在线播放| 久久久久久久久人妻福利免费看| 日韩精品免费一区二区三区竹菊| 97免费公开视频| 992tv成人国产福利在线观看| 亚洲国产成人精品女人久久久久| 麻豆精品久久久久久久99蜜桃 | 麻豆精品人妻一区二区三区蜜桃 | 天堂资源wwwav啪啪| 影音先锋+在线+母亲| 美女黄频视频免费大全久久 | 1000部羞羞视频在线看视频| 国内精品久久久久影院+日本| 在线观看一区二区三区少妇| 免费视频在线观看网站| 日本一卡二卡不卡视频查询| 亚洲国产欧美人成| 波多野结衣一区二区三区四区| 国产亚洲视频中文字幕不卡| 久久网美女黄色视频网站| 12萝自慰喷水亚洲网站| 成人+国产+欧美| 日韩精品――中文字幕| 妖精视频在线观看免费| 免费+精品+在线观看| 天堂中文在线8最新版地址| 亚洲成人免费观看| 午夜久久久久久久| 久久久亚洲欧洲日产av| 精品乱码一区二区三区四区| 日韩欧美国产亚洲一区二区| 国产精品入口免费软件| 人人躁日日躁狠狠躁av| 尤物97国产精品久久精品国产| 国语精品深夜亚洲妇久久资源| 国产白丝jk捆绑束缚调教视频| 国产成人午夜精华液| 国产亚洲精品久久久久久小舞| 民工粗大的茎弄得我好爽视频 | 欧美视频在线观看免费www| 欧美大片免费观看| 午夜丰满极品美女A片| 国产精一品亚洲二区在线播放| 无码中文字幕加勒比一本二本| 中文字幕一区二区三区乱码在线 | 国产在线看片免费观看| 456视频在线观看| 成人高清免费观看| 青青草原亚洲视频| 天天视频在线观看免费精品| 337p日本大胆欧久久| 久久久亚洲av男人的天堂| 艳妇臀荡乳欲伦交换日本| 亚洲一区二区三区四区在线播放| 精品一区精品二区| 日本入室强伦轩人妻HD| 一级做a爰片久久毛片16| 欧洲vodafonewifi巨大动漫| 欧美日韩亚洲一区二区蜜桃臀| 国产91精品欧美| 妺妺窝WWW仙踪林粗大野| 伦理片国产精品久久一国产精品| 青青草原亚洲视频| 黄色小视频在线观看| 国产人妻大战黑人20p| 亚洲伊人网精品在线观看| 日韩欧美精品一区| 日韩美女免费毛片一区二区| 肥臀熟妇淫语对白| 牲交a欧美牲交aⅴ免费一| 欧美日韩亚洲视频一区二区三区| 无码专区—va亚洲v专区vr| 国模裸体无码xxxx视频| 国产美女视频免费观看的网站| 国产精品揄拍一区二区久久国内亚洲精| 九九影院电视剧免费播放观看| 精品福利视频一区二区三区| 蜜臀av在线播放一区二区三区| 在线观看免费视频日本高清| 久久99精品久久久久婷综合| av久久悠悠天堂影音网址| 日韩av免费在线看| 久久精品国产精品亚洲毛片| 国产精品亚洲综合久久系列| 日韩欧美中文字幕激情视频| 久草香蕉在线视频国产乱码精品一区二区三上 | 成人伊人青草久久综合网| 久久久久久99国产精品| 日韩成人无码毛片一区二区| 亚洲色图欧美另类中文字幕| 黑人精品XXX一区一二区| 91国内精品久久久| 国产精品毛片在线完整版| 久久综合亚洲国产精品 | 亚洲精品国男人在线视频| 国产欧美日韩综合精品二区| 毛片网站免费在线观看| 美女制服丝袜国产精品网站| jav+中文字幕| 午夜爽爽爽男女免费观看一区二区| 迅雷种子+日韩+无码| 一本色道久久精品| 国产乱人乱品精一区二区三区 | 日韩精品一二三区| 亚洲av乱码国产精品麻豆| 欧美国产成人免费观看| 日韩好片一区二区在线看| 普通话老太婆日B| 国产免费一区二区三区在线观看| 美女+高潮+国产| 亚洲+日韩+专区| 男人的天堂亚洲中文字幕| 97无码精品综合| 国产真人实拍女处实破| 黄色激情视频网站| 夜夜高潮次次欢爽av女| 人妻美妇av一区二区精品| 九九影院电视剧免费播放观看| 亚洲国产综合av| av免费看片一区二区三区| 东京亚洲女图片在线观看| 久久婷婷丁香七月色综合| 中文国产成人精品久久一区| 97超级精品综合网| 亚洲va中文慕无码久久av| 国产免费av一区二区在线观看| 床戏(巨肉高h)双男| av网站的免费观看| 亚洲暴爽av人人爽日日碰| 视频区另类中文字幕欧美日韩| 漂亮人妻被黑人久久精品| 99精品视频在线观看婷婷| 狠狠色噜噜狠狠狠狠97俺也去| 国产综合色在线精品| 国产九九久久99精品影院| 人妻精品国产一区二区| 9九色桋品熟女内射| 国产日韩欧美精品| 被男人亲下面到高潮视频久久| 麻豆精品免费在线观看视频| 国产+精品+aa| 交换一区二区三区va在线| 乱码精品国产成人观看免费| 贵州小少妇BBAABBAA视频| 亚洲日韩色欲色欲com| 中文字幕免费播放| 国产麻传媒精品国产AV| 蜜臀av国内精品久久久| 张柏芝亚洲一区二区三区| 少妇又色又爽又刺激视频| 婷婷开心激情综合五月天| 色婷婷香蕉在线一区| 亚洲av女优一区二区三区三州 | 精品成人在线一区二区| 欧美日韩在线亚洲二区综二| 精品日韩在线播放| 欧美肥臀大乳一区二区免费视频| 久久99精品.久久久久| 香蕉久久国产超碰青草| 国内大量偷窥精品视频| 国产乱码久久久久久| 久久久久久久福利国产一级| 强行18分钟处破痛哭MJ| 黄色视频国产免费观看| 国产乱码人妻一区二区三区四区| 国产精品高清一区二区| 强行交换配乱婬bd| 国产+高潮+免费视频| 99久久精品无码一区二区免费| 痴汉电车人妻被内谢下面很多水| 国产+高潮+免费视频| 中文字幕+综合+在线| 青青草原亚洲视频| 亚洲+国产+激情| 国产精品无卡毛片视频| 久久婷婷五月综合色国产免费观看| 裸体+光屁屁+露胸| 美女+国产+免费| 深夜国产福利小视频在线观看| 在线观看视频中文字幕| 免费国产精品黄色一区二区| 欧美精品国产制服丝袜第一页 | 久久久91色精品国产一区| 久久国产熟女这里只有精品| 东京热大輪姦多人1311| 中文字幕亚洲欧美在线观看| 香蕉久久av一区二区三区| 热99国产精品久久久久久久| 国产白丝护士av在线网站| 五十路豊満な肉体无码| 永久综合精品网站在线免费观看 | 777奇米四色成人影视色区| 国产欧美综合在线观看第十页 | 亚洲丶国产丶欧美一区二区三区| 一边摸一边抽搐一进一出口述| 日韩一级片在线观看| 日韩a人毛片精品无人区乱码| 99久久夜色精品国产亚洲a| 中文字幕+居然+磁力| 亚洲精品入口一区二区乱| 欧美日韩精品成人网视频| 亚洲欧美综合7777色婷婷| 永久免费看成人AV的动态图| 国产+综合+免费| 黄色毛片一级黄色| 欧美黑人做爰爽爽爽| 中文字幕日本在线| 国产女人久久精品视| 在线观看成人小视频 | 久久久久波多野结衣高潮| 久久久这里只有精品10| 亚洲欧美激情五月在线观看| 久久99精品久久久久久熟女影| 99久久久久免费精品国产 | 久久久综合888免费视频| 人人躁日日躁狠狠躁av麻豆男| 日本xxxx色视频在线播放 | 亚洲熟女av一区二区三区软件| brazzers精品成人一区| 农村末发育av片一区二区 | 精品欧美日韩中文字幕在线观看 | 国产99视频精品免费观看9| 免费看无码网站成人A片| 国产精品久久久久久久久白女| 欧美日韩成人在线免费观看| 亚洲国产婷婷香蕉久久久久久| 制服丝袜诱惑在线观看一二区| 欧美成人免费全部| 少妇激情av一区二区| 亚洲精品丝袜国产自在线| 中文字幕+乱码+无忧| 国产热a欧美热a视频在线观看| 中文字幕丝袜人妻乱一区三区 | 精品视频在线免费观看网址| 国产精品综合一区二区三区 | gogogo免费高清完整| 欧美日韩中文国产| 国产乱码精品一区二区三区四川| 蜜桃tv一区二区三区| 国产精品黄色在线免费观看 | 成人无码精品1区2区3区免费看| 深夜影院在线观看| 免费+精品+在线观看| 99热热久久这里只有精品| 国产suv精品一区二区69| 痉挛高潮喷水av无码免费| 亚洲天堂一二区免费播放| 人妻少妇中文字幕乱码| 色五月五月丁香亚洲综合网| 在线观看免费高清电视剧推荐| 国产女主播精品大秀系列| 亚洲精品午夜无码成人| 巨乳熟妇一区二区三区| 日韩激情在线观看| av岬奈奈美一区二区三区| av久一区二区国产在线观看| 偷自拍亚洲综合在线| 天堂一区二区mv在线观看| 亚洲综合激情国产一区| 你懂的网址亚洲精品在线观看| 国产免费无遮挡吸乳视频app| 少妇人妻无码专区毛片| 18+欧美+日韩| 老熟女熟妇一区二区三区| 日韩av免费观看一区二区三区| 午夜福利精品kkk在线| 人摸人从澡从超碰三级| av动漫在线观看一区二区| 亚洲区欧美日韩综合| 欧美jizzhd精品欧美18| 久久久噜噜噜久久久午夜| 福利一区二区在线视频网| 久久国产乱子伦精品免费女人| 国产成人福利美女观看视频| 久久精品国产亚洲av码| 亚洲欧美日韩第一页| 视频一区二区中文字幕在线| 欧美天堂在线视频| 国产麻豆成人传媒免费观看| 国产女人久久精品视| 亚洲国产麻豆精品系列av| www日本com| 久久人人97超碰国产精品| 欧美大片免费观看| 中文亚洲无线码49vv| 视频毛片蜜桃视频| 欧美成人午夜免费视在线看片| 亚洲中文字幕人成乱在线| 人妻少妇精品无码专区app| 国产偷国产偷亚洲清高网站| 欧美综合一区二区三区在线播放| 9久久国产精品免费视频| 精品亚洲一区二区三区在线观看 | a一区二区三区乱码在线| 喂奶试戏NP(高H| 久久蜜桃资源一区二区老牛| av色欲无码人妻中文字幕| 成年人免费视频在线| 毛片视频在线免费观看| 深夜影院在线观看| 国产精品久久网站| 国产麻豆激情一区二区三区在线 | 欧美xxxx做受欧美1314| a级特黄一级一大片多人| 国产70老熟女重口小伙子| 九九九精品成人免费视频小说| 在线观看免费高清电视剧推荐| 在线观看日韩欧美综合黄片| 91久久久久久久久久久久| 精品免费产品日亚韩二区| 91久久精品国产| 国产在线观看mv免费全集电视剧大全| 在线播放av网站| 国产精品原创不卡在线| 日韩激情一区二区三区| 天天天天做夜夜夜做 | 亚洲va国产日韩欧美精品色婷婷 | 特级西西444www大精品视频| 在线观看com国产视频| 国产区欧美区日韩区| 精品国无人区一品二品三品的特点| 欧美一区二区精品在线观看视频 | 亚洲人成77777在线播放网站不卡| 欧美久久久久久久久高潮视频| 国产在线观看免费人成视频| 国产精品网红尤物福利在线观看 | 91兰州熟女富婆露脸| 麻豆精品一区综合av在线| 99精品久久久久久琪琪| 毛片在线免费视频| 欧美老妇bbwhd| 999在线免费观看精品视频| 精品乱码久久久久久久| 精品人妻码一区二区三区| 欧美+在线+亚洲| 伊人精品成人久久综合软件| 国产69精品久久久久熟女| 一个人在线观看免费视频www| japanese少妇jav| 污污视频网站在线免费观看| 午夜福利理论片高清在线| 久久精品亚洲毛片美女极品视频 | 少妇人人凹凸XX凹凸爽凹凸| 在线亚洲97se亚洲综合在线| 久久久精品午夜免费不卡| 大家可以在这里国产一级淫片a视频免费观看 | 国产精品亚洲欧美大片在线看| 人妻+综合+激情| 中文字幕在线观看网址| 视频一区二区三区亚洲天堂网| 久热re这里精品视频在线6| 国产+资源+视频播放器 | 免费精品国产一区二区三区| 亚洲手机在线人成网站| 破了亲妺妺的处免费视频国产| 淫色一非一区二区朝鲜| 欧美肥臀大乳一区二区免费视频| 一本大道HEYZO乱码专区在破解| 不卡视频一区二区三区| 午夜福利国产精品久久超碰最新| 中文在线字幕免费观看电视剧日剧 | 欧美一区二区三区红桃小说| 亚洲一区二区三区久久久| 亚洲精品在线免费播放| 日韩精品一区二区Av在线| 亚洲+欧洲+国产av| 欧美在线高清视频| 无翼乌18禁全肉肉无遮挡彩色 | 内射少妇一区27p| 国产成人综合久久精品推| 操美女视频国产免费观看| 国产+欧美日韩+一区二区三区| 日本精品在线播放| 久久久亚洲欧洲日产av| 久久亚洲色一区二区三区| 黑人按摩人妻HD中字5| 日韩在线欧美在线| 26uuu久久噜噜噜噜| 国产女人叫床高潮视频在线观看| 最近2019年中文字幕视频| 免费国产特黄特色视频观看| 久久中文字幕av一区二区不卡| 91美女诱惑国产精品视频| 亚洲欧洲国产日韩精彩视频 | 久久人妻无码aⅴ毛片a片动图| 国产精品白丝久久Av网站| 国产乱xxxxx97国语对白| 天堂网www在线资源最新版| 中文在线观看免费| 久久99久久99精品免观看粉嫩| 91精品国产人妻国产毛片在线| 一区二区国产午夜视频在线| 西西4444WWW无码精品| 国产亲子乱婬一级A片| 91啦丨露脸丨熟女| 五十路の完熟豊満无码| 欧美+香蕉网+五月| 伦视频中文字幕亚洲天堂网| www国产精品视频看看| 洗濯屋+无码+迅雷| 欧美亚洲国产精品第一页| 日本日本熟妇中文在线视频| 97精品国自产在线偷拍| 女同久久精品国产99国产精品| 国产精品女同一区二区久久夜| 国产精品精品视频一区二区三区| 永久黄网站色视频免费观看| 久久成人免费精品网站| 91久久精品国产| 欧美成人免费全部| 亚洲婷婷综合色高清在线 | 日韩一级二级视频| 国产成人精品男人的天堂网站| 日产精品成人av片免费看有码| 1024手机在线看片| 已满十八岁免费观看电视剧软件下载| 中文字幕视频在线欧美一区| 亚洲高清在线观看一区二区三区| 天堂网www在线最新版资源 | 日韩欧美在线观看污视频| 欧美精品国产制服丝袜第一页| 日本护士vivoes极品另类| 国产av一区最新精品| 久久久无码精品午夜| 成人看片黄a免费看视频| 8x永久华人成年免费| va亚洲va天堂va视频在线| 91丝袜呻吟高潮美腿白嫩综艺| 久久久久人妻一区二区三区VR| www.免费在线不卡av| 91香蕉视频国产在线观看| 亚洲国产av导航第一福利网| 黄色av网站免费观看| www.香蕉视频| 中文字幕亚洲无线码在线一区| 亚洲最大av在线| 久久久久久久岛国免费网站| 国产伦精品一区二区三区综合网| 国产+免费+综合| 成人又黄又爽又色的网站| 日韩精品+伦理视频+在线观看| 欧美一级午夜福利免费区| 国内外免费激情视频| 精品一区二区三区影院在线午夜| 日韩一级片中文字幕| 1024国产视频| 欧美人与动牲交xxxxbbbb| 麻豆Chinese新婚XXX| 美女一区二区三区视频在线| 亚洲欧美另类综合| 教官用舌头猛烈进入丰满少妇视频| 一本色道久久HEZYO无码| 久久伊人精品视频| 中出あ人妻熟女中文字幕| 亚洲中文字幕无码久久2017| 狠狠色老熟妇老熟女| 免费毛片全部不收费app下载| 初撮り人妻ド五十路妻| 国产成人精品人人2020视频| 久久九九51精品国产免费看| 国产+激情+在线观看| 久久婷婷成人综合色怡春院| 少妇熟女视频网站一区二区三区 | 成人做爰A片免费观看软件| 真实乱子伦厨房A片| 亚洲欧美洲成人一区二区三区 | 狠狠综合久久av一区二区蜜桃| 久久无码av中文出轨人妻| 影音先锋熟女人妻| 韩国主播av福利一区二区| va亚洲va天堂va视频在线| 国产又黄又爽又猛视频在线观看| 无遮挡啪啪摇乳动态图| 无码人妻精品一区二区蜜桃网站| 东京热一本大交乱HD| 欧美又大又黄又粗高潮免费| 日韩人妻无码精品无码中文字幕| 亚洲精品久久久久中文字幕一福利 | 国产+精品+喷水| 亚洲风情亚aⅴ在线发布| 拍拍拍无挡免费视频| 亚洲男女啪啪视频一区二区| 亚洲不乱码卡一卡二卡4卡5| 又粗又紧又湿又爽的视频| 久久99久久99精品免视看| 中文字幕+av在线| 久久精品国产九九久久6| 久久99久久99精品免观看粉嫩| 久热这里只有精品99国产6| 天天爽夜夜爽视频精品 | 超污视频在线观看| 人妻OL佐々木あき破解| 男女做www免费高清视频网站| 亚洲Aⅴ成人精品一区二区三区| 综合久久婷婷丁香国产一区二区| 午夜免费福利视频| 国产黄片视频主播在线观看| 你懂的网址在线观看| 久久久久人妻一区二区三区VR| 99在线精品国自产拍不卡| 日本护士vivoes极品另类| 午夜福利一区二区三区高清视频 | 影音先锋+无码高清| 日本乱妇乱子视频网站| 国产在线观看99| 黄页免费观看一区二区三区| 亚洲中文字幕日产无码成人片| 99久久免费精品国产免费…| 成人免费视频大全| 免费欧美视频一区二区三区| 五月婷婷在线视频观看| 色综合久久久天天综合网| 亚洲免费成人av| 亚洲av乱码国产精品观看麻豆 | 神马影院手机在线电视剧传家电视剧| 色久综合影视天天综合网 | 久久亚洲精品中文字幕无男同| 亚洲精品少妇影院| 国产999久久高清免费观看| 人妻黑人一区二区三区| 国产激情久久久久熟女老人| 国产午夜福利精品理论片| 99久久国产综合一区二区| 男女猛烈激情xx00免费视频| 亚洲日韩精品成人无码专区AV| 国产美女视频免费观看的网站| 少妇高潮7777777丫乄| 国产男生午夜福利免费网站| 国产成人高清免费在线观看| 国产高清av免费在线观看| 国产免费丝袜调教视频免费的| 色欧美福利视频看看午夜| 全国最大成人免费视频| 18禁美女无遮挡在线看| 初撮り五十路老女人| 欧美三级少妇高潮| 国产亚洲又爽ⅴa在线天堂| 扒开女人内裤猛进猛出流出白液 | 日本三级高清视频| 四虎地址8848精品| 日韩欧美中文字幕一区二区| 女人18片毛片90分钟| 亚洲美女视频一区二区三区| www887色视频免费| 99久久婷婷国产一区二区| 风流少妇野外精品视频| 亚洲桃色在线播放国产精品 | 米奇影视盒77777777777| av影片在线观看| 四虎影视1515hhc0m| 人人妻人人做人人爽精品| 久久天天躁狠狠躁夜夜96流白浆| 又粗又硬又黄的国产视频| 91偷拍精品一区二区三区| 亚洲成Av人在线观看网站| 少妇精品无码一区二区免费视频 | 中文字幕av手机版| 99国内视频免费在线观看| 狠狠色丁香婷婷久久综合蜜芽| 日本成人中文字幕| 97精品无人区乱码在线观看| 国产精品久久一区二区三区动| 欧美日韩国产成人综合在线影院| 国产免码va在线观看免费| 国产成人精品自拍| 亚洲一区无码中文字幕| 免费福利视频网站一区二区三区| 国产亲子乱婬一级A片| 亚洲欧美丝袜精品久久中文字幕| 国产一区日本二区在线观看| 一个人看的视频www中文字幕| 久久婷婷狠狠综合激情| 久热这里只有精品99在线观看| 大地资源网在线观看入口| 日韩毛片+白丝+玉足| 久久最新免费视频| 国产内射一区二区xxx| 国产精品中文字幕有码在线观看| 亚洲永久网址在线观看| 国产美女视频免费观看的网站| 97国产线视频在线观看| 久久99精品无码一区二区| 国产成人福利美女观看视频| 一级全黄裸体免费观看视频| 青青国内精品视频免费观看| 国产精品+女人呻吟+在线观看| 国产成人福利美女观看视频| 欧美日韩亚洲一区二区三区一| 可以看国产精品视频的网站| 三年片在线观看高清完整版| 国产手机av片在线观看| 亚洲一区二区三区日韩在线视频| 日韩精品一区二区在线观看| 国产美女直播亚洲一区久久| 亚洲欧美日韩在线观看一区二区三区 | 亚洲免费av网站| 亚洲精品一区二区三区香蕉| 大尺度做爰黄9996片视频| 精品三级在线观看| 电击奶头の尿失禁调教视频| 国产精品人在线观看| 午夜精品久久99蜜桃的功能介绍| 久久99久久99精品免视看| 成在人线Aⅴ无码免费高潮水| 国产综合精品在线| 秋霞无码久久一区二区| 国产精品岛国久久久久久 | 美女+人妻+日韩毛片| 中文字幕综合在线分类| 日韩精品久久久久久希崎杰西卡| 窝窝影院免费观看高清电视剧| 少妇精品无码一区二区免费视频 | 欧美日韩一区二区三区妖精| 亚洲av主播在线观看网| 亚洲+国产+日本视频| 国产av深夜精品福利专区| 97国产爽爽爽久久久| 久久免费少妇做爰| 国产一区二区三区在线免费| 黄色亚洲一区二区三区视频| 野花视频最新免费| 亚洲热线99精品视频| 日韩精品网站在线观看| 婷婷在线视频观看| 国产午夜精品久久久久免| 国产精品户露av在线户外直播| 亚洲精品国产a久久久久久| 无码AⅤ精品一区二区三区| 日本欧美一区视频在线观看| 丁香六月婷婷激情免费视频| 【乱子伦】国产精品.| 欧美中亚洲中文日韩| 亚洲免费av网站| 97夜夜澡人人双人人人喊| 91在线视频免费看| 国产微拍精品一区| 午夜福利黄色小视频| 国产白丝护士av在线网站| 国产真人实拍女处实破| 国产精品乱子伦XXXX| 男人天堂亚洲天堂视频在线观看 | 免费久久99精品国产自在现线| 国产精品99久久免费观看| 国产+欧美+日本| 欧美+日韩+精品久久久| 国产+高潮+免费| 天天在线精品视频一区二区 | 久久精品人妻中文系列| 日韩国产一区二区三区| 成人在线视频在线观看| 亚洲精品一区二区三区香蕉| www国产亚洲精品久久麻豆| 日韩黄片一区二区在线观看| 4488CC.成人A片| 国产亚洲日韩在线人成| 成人在线观看视频网站| 亚洲一区二区免费在线观看| 最近最新中文字幕大全免费6| 鲁大师影院中文字幕在线看| 男人的天堂色偷偷| 久久精品免费看一| 无码人妻丰满熟妇区毛片樱花视频| 国产亚洲Av人片在线观看| 久久精品99久久香蕉国产色戒| 亚洲成在人网站av天堂| 玩弄少妇高潮喷水在线观看| 欧美乱子伦一区二区三区| 久久国产综合尤物免费观看| 国产成人欧美一区二区三区在线| 国产+综合+免费| 日韩不卡高清视频| 日本真人做爰a片| 欧美日韩国产一区二区三区精品 | 超碰在线最新地址| 亚洲国产日韩视频观看| 17c在线观看免费播放电视剧大全 精品人妻艳妇嫩草AV少妇 | 九色琪琪久久综合网天天| 日日噜噜夜夜狠狠视频免费bd| 新欧美ssss亚洲综合| 国产精品国产精品国产专区蜜臀ah| 亚洲色老汉av无码专区最| 全部免费播放在线毛片| 国内女人喷潮完整视频| 久蜜av色av熟女一区| 强奷乱码欧妇女中文字幕熟女 | 高清国产午夜精品久久久久久 | 可以免费观看的毛片| 亚洲国产中文一区二区99re| 亚洲卡一卡2卡3卡4精品| 亚洲欧洲精品专线| 警花av一区二区三区| 真人一级毛片全部播放| essuess免费观看播放| 国产又粗又长又爽又猛视频| 成年人在线免费观看视频网站| 欧美国产成人免费观看| 国产一级真人做受| 国产成人精品免费高潮视频| 骚虎成人免费99xx| 小蝌蚪国产午夜福利| 无码综合天天久久综合网| 亚洲欧美日本国产高清| 麻豆精品免费在线观看视频| 成人做爰A片免费播放乱码| 日韩美女搞黄视频一区二区| 国产农村乱人伦精品视频| 漂亮人妻中文字幕丝袜| 13~14女人毛片视频| 欧美一级特黄特色大片免费观看| 久久精品欧美一区二区| xxxxhd欧美| 最新东京热+中文字幕| 黑人巨鞭大战欧美熟妇| 欧美日韩亚洲一区二区蜜桃臀| 国产日韩欧美系列一区二区| 亚洲欧美日韩精品国产91| 尤物网站视频免费看| 天天综合亚洲综合网天天αⅴ| 国产色乱码一区二区三区| 97成人精品视频在线播放| 久草在线免费资源| 中文在线高清字幕电视剧第三季预告| 亚洲日韩av一区二区三区中文| www.四虎.com| 国产毛片一区二区三区| 成年女人免费视频| 最近2018中文字幕在线视频| 亚洲欧美综合色视频播放| 日韩精品无码免费专区午夜不卡| 亚洲+先锋影音+图片| 一本色道久久综合亚州精品蜜桃| 欧洲美熟女乱又伦免费视频| 亚洲精品在看在线观看高清| 日韩精品一区二区Av在线| 国产欧亚州美日韩综合区| 国产欧美日韩综合精品一区二区| 精品国产欧美日韩一区二区| 日韩国产在线观看不卡免费 | 女女百合av大片一区二区三区九县| 激情视频免费在线观看| 哈尔滨熟女白浆91九色| 免费观看四虎国产精品午夜| 亚洲天堂2014| 国产精品国产三级国产av剧情| 成人av网站在线观看免费| 精品国产粉嫩内射白浆内射双马尾| 日韩欧美视频一区二区三区| 国产精品久久久久久久久裸体 | 青草伊人久久综在合线亚洲 | 国产日韩精品一道在线观看| 免费黄色网址在线观看| 【快穿】淫交任务(高h| 国产+高潮+护士| 日韩精品网站在线观看| 日本道精品一区二区三区| 欧美日本一道本一区二区中文| 久久久久久久岛国免费网站| 5g影视+国产+日韩| 90岁老太婆乱淫| 亚洲少妇无码综合| 久久97超碰国产精品超碰| 日本少妇自慰免费完整版| 欧美日韩国产一级片免费网站| 97久久超碰国产精品最新| 磁力bt天堂在线www搜索| 亚洲国产欧美日韩在线人成| 狠狠色丁香婷婷亚洲综合| 天堂网一区二区在线播放| vvvv99日韩精品亚洲| 91亚洲美女在线视频观看| 亚洲天堂2017无码| 日韩av资源在线| 精品久久久久久久久免费视频| 狠狠色狠狠色综合日日小说| 亚洲欧美日韩国产综合在线播放| 337p日本大胆欧美人术艺术69| 日本+高潮+免费| 国产精品爽爽久久久久久豆腐 | 欧美一级免费在线观看视频最新| 人摸人从澡从超碰三级| 香蕉视频在线观看黄| 五月天激情久久久| 84pao国产成视频永久免费| 四十路の完熟豊満无码| 国产一区二区自拍视频| 18+成人在线观看| 99精品久久久久久久婷婷| 夜夜躁狠狠躁日日躁视频| 大象一区一品精区搬运机器| 韩国做aj的视频大全| 中文字幕在线观看网站| 免费国产精品黄色一区二区| 欧美综合在线观看视频| 国产成人精品日本亚洲麻豆| 亚洲激情av在线| 综合久久久一区二区三区| 最好看的2019中文大全在线观看 | 国产成人亚洲日韩欧美久久| 国产精品久久99精品毛片三a| 91久久久精品国产一区二区蜜臀| 国产不卡av免费在线观看| 777婷婷天堂综合区色吧| 99香蕉国产精品偷在线观看| 日韩精品极品视频在线观看免费 | 91精品视频国产| 亚洲视频一区高清在线观看| 一本一道久久综合狠狠老| 99精品视频在线观看婷婷| 亚洲欧洲日产国码无码av专区 | 欧美成va视频网站| 亚洲天堂视频免费观看网站| 亚洲第一视频在线播放| 国产娇喘喷水呻吟在线观看| 国产美女无套爽到高潮视频 | 欧美在线99香蕉在线视频| 羞羞色院91精品网站| 国产在线看老王影院入口2021| 成人欧美一区二区国产精品| 696息子精品一区| 国产精品久久久久一区二区| 日韩午夜一区二区在线精品三级伦理| 日韩精品一区在线观看视频| 午夜成人理论福利片| 精品一区二区三区四区五区六区 | 亚洲高清在线视频| 天天澡天天狠天天天做| 欧美日本一道本免费三区| 高潮+国产+免费| 国产精品欧美一区二区三区喷水| 中文字幕高清一区| 精品亚洲国产日韩女人av..| 西西444WWW无码视频软件功能介绍 | 国产精品久久久久久久永久免费| 啊灬啊灬轻点第一次和外国人| 国产精品a国产精品a手机版| 午夜精品一二三区| 国内少妇高潮嗷嗷叫在线播放| 亚洲a片成人无码久久精品色欲| 黑人巨鞭大战欧美熟妇| 国产乱子伦精品免费女| 国产亚洲精品福利视频 | 国产精品久久久久久成人| 全黄一级裸片视频| 国产亚洲精品久久久久久大师| 久久综合亚洲国产精品| 八戒八戒在线www视频中文| 国产乱人乱品精一区二区三区| 711公侵犯美丽人妻| 一边吃奶一边舔p好爽视频观看| 探花视频免费观看高清视频| 国内精品偷拍视频| 亚洲欧美日韩视频一区二区三区 | 亚洲色图av在线| 欧美阿v高清资源不卡在线播放| 美女又爽又黄又免费网站| 亚洲欧美另类成人综合图片| 亚洲午夜精品一区二区三区国产 | 中文字幕+欧美精品+制服丝袜| 日韩高清亚洲日韩精品一区二区 | 风韵犹存大屁股99AV| 公侵犯美丽人妻一区二区| 任你干在线精品视频网2| 国产91精品久久久久久精华液 | 丰满的三级少妇欧美久久| 国产av制服二区三区av系列| 重囗味sM群虐一区二区| 亚洲国产精品久久久男人的天堂| 无遮挡高潮国产免费观看韩国| 日日噜噜夜夜狠狠久久丁香五月| 97夜夜澡人人双人人人喊| 国产对白叫床清晰在线播放图片 | 狠狠躁夜夜躁人人爽天天bl| 日韩午夜一区二区在线精品三级伦理 | 丰满大乳奶做爰ⅩXX视频 | 蜜臀av在线播放一区二区三区| 天天操天天舔天天干| 日本卡2卡3卡4卡5卡精品视频| 免费人成在线观看网站免费观看| 在线观看片免费人成视频播放| 国产毛片女人高潮叫声| 国产精品视频麻豆| 精品人伦一区二区三区蜜桃网站| 在线观看特色大片免费网站| 国产91高潮流白浆在线麻豆| 色综合视频一区二区三区44 | 国产午夜亚洲精品不卡下载| 国产免费一级淫片a级中文| 国产成人三级在线视频网站观看| 在线免费观看美女被靠到高潮 | 无码人妻丰满熟妇区毛片18| av综合网男人的天堂| 成年人免费观看国产精品视频 | 91嫩草视频在线观看| 丁香花在线影院观看在线播放| 国产午夜福利久久精品| 天堂久久久久va久久久久| 中文字幕乱码一区av久久不卡| 国产又黄又大又爽| 国产av丝袜一区二区三区| 国产精品青草久久久久婷婷| 成人网站免费大全日韩国产| 老牛嫩草一区二区三区消防 | 在线欧美日韩制服国产| 香蕉国产线观看免费永久图片 | 在线新版天堂资源中文www| 欧美日韩不卡视频合集| 在线视频+亚洲+人气| 国产精品免费观看调教网| 高清国产日韩黄色录像| 91久久精品一区二区婷婷| 国产+在线+天堂| 粉嫩B馒头一区二区| 欧美日韩高清在线| 18+韩国美女主播| 亚洲国产精品久久99人人更爽| 国产精品美女久久久久av丝袜| 久久人妻这里有精品视频| 1024亚洲男人的天堂久久| 亚洲美女高清无水av| 男女做www免费高清视频网站| 日韩欧美中文字幕在线播放| 亚洲综合中文字幕无线码| 欧美xxxx免费虐| 国产后进白嫩翘臀在线播放| 人妻免费久久久久久久了| 69精品国产福久久久久久| 99久久久久免费精品国产| 久热中文字幕第一区二久| 国产精品一区在线蜜臀av| 久久精品国产亚洲av码 | 国产精品亚洲欧美中文字幕| 青草伊人久久综在合线亚洲观看| 99久久99久久精品免费看蜜桃| 99久久精品国产亚洲| 久久免费少妇做爰| 国产+很黄+视频| 国产一区二区av在线免费观看| 久久女人天堂精品av影院麻| 天天摸夜夜添狠狠添高潮出水| 99久久精品无码一区二区毛片| 欧美又粗又大又硬久久久| 1000部丰满熟女富婆视频| 国产亚洲日韩欧美另类第八页| 亚洲欧美中视频国内自拍 | 国产97人人超碰cao蜜臀| 日本中文字幕一区二区高清在线| 制服丝袜在线视频| 亚洲欧美日韩中文久久| 国产一区高清视频在线观看| 杨思敏高圆圆三级做爰| 亚洲欧美日韩中文字幕一区二区| 国产偷窥熟女高潮精品视频 | 中文字字幕在线乱码视频| 嫩BBB槡BBBB槡BBBB免费视频| 日本高清在线观看视频www| 久久91精品国产91久久小草| 国产成人亚洲综合网站小说| 亚洲精品久久久久久无码色欲四季| 国产+欧美+日本在线观看| 免费在线观看午夜片网站| 一区二区三区四区在线免费视频| 91视频中文字幕| 狠狠色综合Tⅴ久久久久久| 97久久精品国产一区二区三区| 男女车车的车车网站w98免费| 伊人久久大香线蕉午夜av| 西西人体44WWW高清大胆| 精品中文字幕免费在线观看| 久久久国产一区二区三区四区小说 | 日本极品少妇一区二区在线观看| 国产精品av免费观看| 亚洲国产精品久久久久婷婷青年| 尹人香蕉久久99天天拍久女久| 国产欧美日韩丝袜在线视频| 一级成人欧美一区在线观看 | 黑色丝袜国产精品| 国产+精品+空姐| 中文字幕欧美高清在线观看| 91精品啪在线观看国产81旧版| 亚洲日本乱码一区二区三区| 免费无遮挡无码永久视频| 成人国产热播资源| 夫妻高潮淫语对白视频| av黄网站免费永久在线观看| 欧美又大又黄又粗高潮免费| 视频毛片蜜桃视频| 亚洲成a人片在线观看无遮挡 | 国产一区二区三区精品综合 | 欧美伊香蕉久久综合网另类 | 国产精品综合久久久精品综合蜜臀| 国产做a爰片久久毛片a我的朋友| 久久久久青草线蕉综合超碰| 国产精品久久久久久久久久| 福利丝袜视频一区二区三区| 乡下人产国偷v产偷v自拍 | 中文字幕+日韩在线视频| 国产综合在线观看一区精| 国产精品视频男人的天堂| 又色又爽又黄的视频女女| 国产精品夜夜爽7777777| 国产国拍精品av在线观看| 国产欧美日韩精品一区二区图片| 夜夜躁狠狠躁2021| 国产少女免费观看电视剧| 饥渴少妇高清videos| 国产又大又猛又粗视频在线观看| 懂色av蜜臀av粉嫩av分享吧| 日韩av中文字幕国产精品 | 国精产品一区二区三区x88 | 国产+高潮+护士| 久久精品国产只有精品2020 | 极品白嫩丰满美女无套| 17c在线观看免费播放电视剧大全| 久久精品aaaaaa羞羞羞| 精品日韩国产一区二区三区| 樱桃国产成人精品视频| 国产欧美日韩一区二区刘玥| 成人美女免费网站视频| 一区二区三区在线欧洲污| 亚洲日韩精品区二区av | 久久久精品国产亚洲成人满18免费网站| 国产在线jyzzjyzz免费护士| 欧美一级a视频免费在线观看 | 强行交换配乱婬bd| 精工厂777免费观看电视剧| 亚洲Av永久无码精品尤物| 91成人在线免费观看| 国产女人爽的流水毛片| 人妻精品一区二区在线视频| 天堂а√在线地址8中文种子| 中文+日韩+欧美| 91久久久久久亚洲精品蜜桃| 日韩精品亚洲aⅴ在线影院| 中文字幕+乱码+无忧| 精品一区二区国产免费av| 天堂躁躁人人躁婷婷视频ⅴ| 中文字幕+欧美精品+制服丝袜 | 亚洲欧美日韩视频一区二区三区| 夜夜添狠狠添高潮出水| 思思青青人人草热视频| 国产精品免费视频网站| YY4480青苹果乐园免费播放电视剧| 国产乱码精品一区二区三| 91绿帽黑人系列一区| 18精品毛片久久久久| 亚洲欧美日本在线观看视频| 亚洲国产欧美中文手机在线| 欧美+国产+极品| 美女高清久久久久久小视频| 精品人妻久久久久久888| 中文+乱码+欧美| 国产精品视频麻豆| 精品久久久久久中文墓无码| 久久亚洲色一区二区三区| 精品亚洲成a人片在线观看少妇| 国产va在线观看| 国产一区二区三区精品综合| 亚洲精品国产精华液| 日韩激情+一区二区三区+中文字幕| 精品亚洲精品第—区| 极品气质女神呻吟娇喘91| 国产精品九九九久久综合| 日本精品婷婷久久爽一下| 老太太老b乱子伦| 日韩精品国产一区在线久草| 青草av久久免费一区| 亚洲欧美视频在线播放| 国产三级在线观看视频| 日本一区二区在线视频网站| 亚洲精品一区二区三区不| ww污污污网站在线看com| 狠狠躁18三区二区一区| 农村熟妇高潮精品A片| 欧美视频在线观看精品二区| 又色又爽又黄的视频网站| 精品人妻系列乱码一区二区三区 | 欧美老妇bbbwwbbbww| 成人免费在线网站| 国产高清a视频在线观看| 深夜激情18禁亚洲蜜臀av| 国产一二三四视频在线观看| 亚洲人成未满十八禁网站 | 亚洲精品免费观看| 亚洲日本乱码一区二区在线二产线| 短篇肉r车多肉r文| 日本极品少妇一区二区在线观看 | 亚洲精品国产一区二区三区在线观看 | 久久精品国产亚洲av水密被窝 | 特级西西444www大精品视频| 国产色乱码一区二区三区| 91精品国产精品| 91精品人妻麻豆一区二区| 国产精品欧美激情在线播放| www成人国产高清内射| 亚洲国产中文一区二区99re| 一级做a爰片久久毛片潮喷妓| aaa级精品久久久国产片| 国产国产成人久久精品| 太骚了全程淫语!| 99久久精品无码一区二区三区| 粉嫩小泬无遮挡BBBBB图片| 亚洲欧美在线视频| 裸体+光屁屁+露胸| 国产成人免费av片久久| 午夜小视频在线播放| 精品人妻伦九区久久aaa片| 亚洲+精品+欧美| 色悠久久久久综合网+香蕉| 国产+高潮+护士| 国产互换人妻XXXX6| 一区二区丰满视频免费观看| 黄色小视频在线观看| 国产精品99久久久网站| 亚洲精品一区二区三区中文字幕| 日本+超碰+专区| 国产日韩欧美不卡在线二区| 99久久婷婷国产综合精品| 窝窝影院在线观看免费播放电视剧| 国产成人综合久久亚洲精品| 国产寡妇树林野战在线播放| 啊灬啊灬轻点第一次和外国人| 日韩欧美在线一区| 91精产国品一二三产区区动漫| 日韩一级二级视频| 一区二区三区+国产+欧美日韩| 亚洲色欲久久久久综合网| 精品国产乱码久久久久久蜜柚 | 三级黄色免费网站| 国产+传媒+国产av| 国产精品黄日韩成人黄亚洲| 国产顶级熟妇高潮xxxxx| 色综合图区av网站| 少妇无码自慰毛片久久久久久| 国产又大又长又粗又硬又爽| 成人+欧美精品+一区二区三区| 国产亚洲欧美在线专区| 日韩好片一区二区在线看| 国产女子爆操高潮免费视频| wwwcom日本| 2019年国产精品看视频| 视频一区二区三区亚洲天堂网| 蜜臀av无码一区二区三区| 区二三区四区精华日产一线二线三 | 亚洲熟妇无码一区二区三区| 免费国产精品一区二区三| 最近中文字幕在线视频8| 国产成人+综合亚洲+天堂| 9.1入口nba在线观看免费| 999久久久久久久久6666 | 国产高清精品福利私拍国产| 欧美激情一区二区三区视频| 五月天丁香婷婷亚洲综合一区 | 欧美一级特黄特色大片免费观看| 青椒国产97在线熟女| 国产女爽爽爽爽精品视频| 婷婷色九月综合激情丁香| 在线看片免费不卡人成视频| 西西GoGoGo高清在线完整版| 欧美成人精品高清在线观看| 婷婷精品久久久久久久久久不卡| 东莞+无码+下载| 日韩成人无码毛片一区二区| 91精品国产综合久久久蜜臀九色 | 无码+成人+种子下载| 俺去俺来也www色官网cms| 999国产精品欧美在线a| 久久天天躁狠狠躁夜夜97| 在厨房拨开内裤进入毛片| 亚洲AV永久无码精品成人| 日韩精品无码一本二本三本色| 扒开女人内裤猛进猛出流出白液 | 国产精品卡一卡二卡三| 久艾草在线精品视频在线观看| 久久免费视频精品在线| 精品乱码一区二区三区四区| 久久99国产精品黄色片| 国产免费拔擦拔擦8x高清在线人| 国产+免费+高潮| 久久国产精品久久w女人spa| 亚洲欧洲AV无码区玉蒲区| 久久久亚洲欧洲日产av| 亚洲欧美日本国产高清| 国产成人精品一二三区| 97久章草在线视频播放| 夜夜国产一区+1080p| 九九热这里只有精品6| 少妇高潮喷水久久久久久久久久| 一个人看的视频www中文字幕| 亚洲va韩国va欧美va| 欧美数码高清视频| 亚洲AV成人片无码网| 亚洲精品无码不卡久久久久| 青草伊人婷婷精品视频在线观看 | 永久综合精品网站在线免费观看| 99精品国产免费观看图片| 黄色精品视频一区二区三区| 又大又黄又粗高潮免费| 精品123区免费视频国产成人| 精品偷自拍另类在线观看 | 国产精品美女WWW爽爽爽视频 | 亚洲av成人一区国产精品一| 中文字幕日产乱码一区| 亚洲欧美在线视频观看| 四川少妇高潮无套毛片| 九九视频在线播放| 色综合久久久天天综合网 | 久久久久久久91| 国产女人高潮毛片| 少妇特黄一区二区三区| 日韩欧美精品一区二区蜜臀 | 久久半精品国产99精品国产| 国产无套内谢普通话对白91| 久久精品国产亚洲av麻豆尤物| 国产97在线乱码中文乱码| 日韩18中文字幕欧美在线 | 欧美在线一二三区| 亚洲欧洲精品成人久久曰影片| 日韩美女高潮喷水免费看| 熟妇~x88AV翔田千里| av中文字幕+潮喷+在线观看| 四虎精品美女国产在线观看| 国产一区二区三区四区五区六区| 五月综合激情婷婷六月色窝| 91贵在真实少妇SPA推油按摩| 少妇人人凹凸XX凹凸爽凹凸| 日韩一区二区视频| 国产成人久久精品二区三区| 久久精品国产自清天天线| 麻豆产精品一二三产区区| 国产精品精品久久久| 国产黄色片在线播放| 国产女人18毛片水真多成人如厕| 久久天天躁狠狠躁夜夜av不卡| 大地资源网在线观看入口| 国产+传媒+国产av| 亚洲午夜精品一区二区国产| 高清日韩精品一在线观看视频| 日韩中文字幕AV| 欧美一区二区三在线观看| 久久精品视频久久| 91大神精品在线| 尤物97国产精品久久精品国产| 视频+成人+在线| 午夜激情一区二区| 国产+刺激+高潮| 天堂在线视频免费| 国产午夜18久久久久久白浆| 精品人妻艳妇嫩草AV少妇| 日本+国产+欧美| 国产愉拍自拍中文在线| 欧美日韩成人一区二区| 国产乡下三级全黄三级bd| 欧美激情内射喷水高潮| 日韩欧美中文字幕在线播放| 亚洲国产专区校园欧美| 国产高清视频在线播放www色| 人妻无码熟妇乱又伦精品视频| 欧美a中文字幕在线播放| 亚洲欧美日韩国产成人精品影院| 最新日韩精品中文字幕| 国产视频手机在线观看| 国产在线清纯极品美女援交| 欧美三级+不卡+在线观看| 人妻av中文字幕久久| 日韩精品手机在线| 999久久久久久久久6666| 亚洲精品国产自在现线最新| 久久久久xxxx| 中文字幕人妻少妇引诱隔壁| 国产日韩欧美一区在线播放| 狠狠综合久久久久尤物| 久久精品+中文字幕+有码| 波多野结衣视频一区二区| 国产欧美va天堂在线观看视频下载 | 人妻少妇精品无码专区app| 欧美另类一区二区| 国产成人高清视频| 国产xxxxx在线观看免费| 特级特黄AAAAAAAA片无锁| 网站+激情+国产| 丰满少妇被粗大的猛烈进出视频 | 中文在线天堂а√在线| 国产又爽又黄又粗又硬视频| 国产+高潮+视频| 成人国产免费观看| 日本猛少妇色xxxxx猛叫| 欧美视频在线观看| 亚洲国产色婷婷久久精品| 国产福利专区视频在线播放| 国产视频一区二区二区三区| 日韩av资源在线| 国产精品99久久免费观看| 亚洲精品久久久久久婷婷| 91精品国产综合久久国产大片 | 一区二区国产午夜视频在线 | 香蕉在线精品视频在线观看 | 亚洲人av在线影院| 国内精品国语自产拍在线观看| 天天爽夜夜爽人人爽qc| 人人爽日日躁夜夜躁尤物| 中文字幕永久视频| 26uuu亚洲国产欧美日韩| 黑人一区二区三区| 美女在线观看免费视频网站| 天天躁日日躁狠狠躁伊人| 亚洲hdmi高清线| 视频区另类中文字幕欧美日韩 | 国产一区+欧美+综合| 97这里有精品久久97| 国产又粗又长又硬又黄视频| WWW亚洲色大成网络.COM| 91精品国产色综合久久不卡98| 亚洲免费视频一区二区| yy111111少妇嫩草影院| 国产av综合第1页| 久久99精品久久久久久清纯| 又色又爽又黄又无遮挡的网站| 国产欧美日韩精品一区二区蜜臀| 好吊色国产欧美日韩免费观看| 国产亚洲精品久久精品6| 视频一区二区中文字幕在线| 亚洲黄色一区大陆av剧情| 国产欧美成人xxx视频| 成人免费毛片AAAAAA片| 99精品+麻豆+国产| 中文字幕国内自拍| 午夜爽爽爽男女免费观看一区二区 | 亚洲伊人五月丁香激情| 亚洲啪啪aⅴ一区二区三区9色| 啊灬啊灬轻点第一次和外国人 | 亚洲婷婷天堂在线综合| 中文字幕亚洲欧美在线观看| 亚洲成人在线视频观看| 在线+中文字幕在线观看| 麻豆果冻传媒精品+视频| 国产亚洲五月天综合91| 亚洲精品国产精品国自产网站| 日韩激情一区二区三区| av一区二区在线观看| 一本一本久久a久久精品综合不卡 日本在线一区二区三区欧美 | 欧美亚洲国产另类第一页| 无码+自拍+磁力链接| 玖玖无码中文字幕五月天| 国产精品自产拍在线观看中文| 亚洲卡一卡2卡3卡4精品| 亚洲丝袜制服在线观看视频| 日本三级带日本三级带黄| 91大神精品在线| 欧美乱子伦一区二区三区| 日本护士vivoes极品另类| 国产又粗又长又猛黄色视频| 日韩欧美在线第一页| 中文字幕免费高清电视剧网站| 狠狠综合久久久久尤物| 免费的污污污网站在线观看| 国产xxxxx在线观看免费| 欧美一区二区日韩| 国产又黄又爽又色的免费视频| av免费在线观看一区不卡| 可以在线看的av网站| 北条麻妃大战黑人无码| 国产精品偷伦视频观看免费| 18精品毛片久久久久| 重囗味sM群虐一区二区| 粉嫩av一区二区三区四区五区| 超级黄18禁色惰网站| 亚洲中文字幕无码中字| 人成午夜大片免费视频| 国产精品视频_区二区三区| 国产91久久婷婷一区二区| 日韩午夜理论免费tv影院| 久久免费的精品国产v∧| 国产成人福利av综合导航| 亚洲一区二区三区av无码| 中文字幕国内自拍| 国产主播一区二区三区| 亚洲欧美另类成人综合图片| 半夜摸妺妺的奶摸到高影院 | 囯产精品久久777777换脸| 日本欧美国产在线视频一区| 在线看片免费不卡人成视频| 日韩Aⅴ黄日韩a影片| 国产精品午夜小视频观看| 97SE亚洲精品一区| 亚洲一卡久久4卡5卡6卡7卡| 中文字幕第一頁亞洲| 亚洲最大av在线| 四个人妻互换不戴套| 亚洲欧美综合色视频播放 | 91传媒在线播放| 亚洲欧美日韩国产精品网| 手机中文字幕在线免费视频| 国产高清一区二区三区视频| 摸进她内裤里疯狂揉她的桃子视频| 久青青在线观看视频国产| 国产精品久久一区二区三区动| 樱桃国产成人精品视频| 丫丫影院免费观看电视剧| 欧美熟女五十路视频一区| 精品人伦1区2区3区蜜桃| 美女网站免费福利视频| 91精品国产一区二区三区蜜臀| 免费在线观看av网站| 粉嫩av国产一区二区三区| 国产精欧美一区二区三区| 香蕉97超级碰碰碰免费| 91视频免费网站| 国产成人AⅤ片在线观看免费| 丁香开心五月婷婷精品伊人| 欧美香蕉爽爽人人爽| 777米奇色888狠狠俺去啦| 亚洲欧美日韩_欧洲日韩| 出差+无码+thunder| 麻豆国产丝袜白领秘书在线观看| 色欧美福利视频看看午夜| 国产寡妇精品久久久久久| 亚洲制服国产丝袜综合四季av | av黄网站免费永久在线观看| 高潮毛片无遮挡高清免费视频网站 | 四虎影视最新免费版| 亚洲国产精品久久久男人的天堂| 伊人久久精品无码麻豆一区| 国产老熟女伦老熟妇视频| 国产麻豆亚洲欧美高清一区二区| 亚洲免费观看在线视频| 久久久精品7777777| 久久精品国产精品青草app| 美女+高潮+国产| 国产欧美另类久久久精品99| 国产sm重味一区二区三区| 国产美女裸体丝袜喷水视频| 中国国产免费毛卡片| 五月天丁香婷婷亚洲综合一区| 亚洲国产精品一区二区999| 国产伦久视频免费观看| 美女视频黄频a免费高清不卡| 少妇又色又紧又爽又高潮| 日本精品在线播放| 免费看国产一级特黄aa友片| 91精品国产综合久久久久 | 久久99久久99精品免视看| 亚洲一区二区三区av无码| 欧美日韩亚洲精品成人片区| 99久久精品无码一区二区毛片| 免费在线观看午夜片网站 | 国产精品久久久久久三级| 欧美+国产+韩国| 国产美女遭强高潮网站一区二区| 久久天天躁夜夜躁狠狠躁综合| 丰满的女人一区二区三区| 国产日韩欧美91| 五月天激情久久久| 久久精品国产一区二区三区 | 国产精品三级国产精品高| 国产亲子乱a片免费视频| 天天澡天天狠天天天做| 日韩欧美中文字幕在线观看免费| 婷婷俺也去俺也去官网|